Package 'tidyselect'

Title: Select from a Set of Strings
Description: A backend for the selecting functions of the 'tidyverse'. It makes it easy to implement select-like functions in your own packages in a way that is consistent with other 'tidyverse' interfaces for selection.
Authors: Lionel Henry [aut, cre], Hadley Wickham [aut], Posit Software, PBC [cph, fnd]
Maintainer: Lionel Henry <[email protected]>
License: MIT + file LICENSE
Version: 1.2.1.9000
Built: 2024-10-28 16:18:22 UTC
Source: https://github.com/r-lib/tidyselect

Help Index


Select variables from character vectors

Description

These selection helpers select variables contained in a character vector. They are especially useful for programming with selecting functions.

  • all_of() is for strict selection. If any of the variables in the character vector is missing, an error is thrown.

  • any_of() doesn't check for missing variables. It is especially useful with negative selections, when you would like to make sure a variable is removed.

The order of selected columns is determined by the order in the vector.

Usage

all_of(x)

any_of(x, ..., vars = NULL)

Arguments

x

A vector of character names or numeric locations.

...

These dots are for future extensions and must be empty.

vars

A character vector of variable names. If not supplied, the variables are taken from the current selection context (as established by functions like select() or pivot_longer()).

Examples

Selection helpers can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

It is a common to have a names of variables in a vector.

vars <- c("Sepal.Length", "Sepal.Width")

iris[, vars]
#> # A tibble: 150 x 2
#>   Sepal.Length Sepal.Width
#>          <dbl>       <dbl>
#> 1          5.1         3.5
#> 2          4.9         3  
#> 3          4.7         3.2
#> 4          4.6         3.1
#> # i 146 more rows

To refer to these variables in selecting function, use all_of():

iris %>% select(all_of(vars))
#> # A tibble: 150 x 2
#>   Sepal.Length Sepal.Width
#>          <dbl>       <dbl>
#> 1          5.1         3.5
#> 2          4.9         3  
#> 3          4.7         3.2
#> 4          4.6         3.1
#> # i 146 more rows

iris %>% pivot_longer(all_of(vars))
#> # A tibble: 300 x 5
#>   Petal.Length Petal.Width Species name         value
#>          <dbl>       <dbl> <fct>   <chr>        <dbl>
#> 1          1.4         0.2 setosa  Sepal.Length   5.1
#> 2          1.4         0.2 setosa  Sepal.Width    3.5
#> 3          1.4         0.2 setosa  Sepal.Length   4.9
#> 4          1.4         0.2 setosa  Sepal.Width    3  
#> # i 296 more rows

If any of these variables are missing from the data frame, that's an error:

starwars %>% select(all_of(vars))
#> Error:
#> i In argument: `all_of(vars)`.
#> Caused by error in `all_of()`:
#> ! Can't subset elements that don't exist.
#> x Elements `Sepal.Length` and `Sepal.Width` don't exist.

Use any_of() to allow missing variables:

starwars %>% select(any_of(vars))
#> # A tibble: 87 x 0

any_of() is especially useful to remove variables from a data frame because calling it again does not cause an error:

iris %>% select(-any_of(vars))
#> # A tibble: 150 x 3
#>   Petal.Length Petal.Width Species
#>          <dbl>       <dbl> <fct>  
#> 1          1.4         0.2 setosa 
#> 2          1.4         0.2 setosa 
#> 3          1.3         0.2 setosa 
#> 4          1.5         0.2 setosa 
#> # i 146 more rows

iris %>% select(-any_of(vars)) %>% select(-any_of(vars))
#> # A tibble: 150 x 3
#>   Petal.Length Petal.Width Species
#>          <dbl>       <dbl> <fct>  
#> 1          1.4         0.2 setosa 
#> 2          1.4         0.2 setosa 
#> 3          1.3         0.2 setosa 
#> 4          1.5         0.2 setosa 
#> # i 146 more rows

Supply named vectors to all_of() and any_of() to select and rename columns at the same time:

colors <- c(color_of_hair = "hair_color", color_of_eyes = "eye_color")
starwars %>% select(all_of(colors))
#> # A tibble: 87 x 2
#>   color_of_hair color_of_eyes
#>   <chr>         <chr>        
#> 1 blond         blue         
#> 2 <NA>          yellow       
#> 3 <NA>          red          
#> 4 none          yellow       
#> # i 83 more rows

See Also

The selection language page, which includes links to other selection helpers.


Evaluate an expression to relocate variables

Description

eval_relocate() is a variant of eval_select() that moves a selection to a new location. Either before or after can be provided to specify where to move the selection to. This powers dplyr::relocate().

Usage

eval_relocate(
  expr,
  data,
  ...,
  before = NULL,
  after = NULL,
  strict = TRUE,
  name_spec = NULL,
  allow_rename = TRUE,
  allow_empty = TRUE,
  allow_predicates = TRUE,
  before_arg = "before",
  after_arg = "after",
  env = caller_env(),
  error_arg = NULL,
  error_call = caller_env()
)

Arguments

expr

Defused R code describing a selection according to the tidyselect syntax.

data

A named list, data frame, or atomic vector. Technically, data can be any vector with names() and "[[" implementations.

...

These dots are for future extensions and must be empty.

before, after

Defused R code describing a selection according to the tidyselect syntax. The selection represents the destination of the selection provided through expr. Supplying neither of these will move the selection to the left-hand side. Supplying both of these is an error.

strict

If TRUE, out-of-bounds errors are thrown if expr attempts to select or rename a variable that doesn't exist. If FALSE, failed selections or renamings are ignored.

name_spec

A name specification describing how to combine or propagate names. This is used only in case nested c() expressions like c(foo = c(bar = starts_with("foo"))). See the name_spec argument of vctrs::vec_c() for a description of valid name specs.

allow_rename

If TRUE (the default), the renaming syntax c(foo = bar) is allowed. If FALSE, it causes an error. This is useful to implement purely selective behaviour.

allow_empty

If TRUE (the default), it is ok for expr to result in an empty selection. If FALSE, will error if expr yields an empty selection.

allow_predicates

If TRUE (the default), it is ok for expr to use predicates (i.e. in where()). If FALSE, will error if expr uses a predicate. Will automatically be set to FALSE if data does not support predicates (as determined by tidyselect_data_has_predicates()).

before_arg, after_arg

Argument names for before and after. These are used in error messages.

env

The environment in which to evaluate expr. Discarded if expr is a quosure.

error_arg

Argument names for expr. These are used in error messages. (You can use "..." if expr = c(...)).

error_call

The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument of abort() for more information.

Value

A named vector of numeric locations with length equal to length(data). Each position in data will be represented exactly once.

The names are normally the same as in the input data, except when the user supplied named selections with c(). In the latter case, the names reflect the new names chosen by the user.

Examples

library(rlang)

# Interpret defused code as a request to relocate
x <- expr(c(mpg, disp))
after <- expr(wt)
eval_relocate(x, mtcars, after = after)

# Supplying neither `before` nor `after` will move the selection to the
# left-hand side
eval_relocate(x, mtcars)

# Within a function, use `enquo()` to defuse a single argument.
# Note that `before` and `after` must also be defused with `enquo()`.
my_relocator <- function(x, expr, before = NULL, after = NULL) {
  eval_relocate(enquo(expr), x, before = enquo(before), after = enquo(after))
}

my_relocator(mtcars, vs, before = hp)

# Here is an example of using `eval_relocate()` to implement `relocate()`.
# Note that the dots are passed on as a defused call to `c(...)`.
relocate <- function(.x, ..., .before = NULL, .after = NULL) {
  pos <- eval_relocate(
    expr(c(...)),
    .x,
    before = enquo(.before),
    after = enquo(.after)
  )
  set_names(.x[pos], names(pos))
}

relocate(mtcars, vs, .before = hp)
relocate(mtcars, starts_with("d"), .after = last_col())

Evaluate an expression with tidyselect semantics

Description

eval_select() and eval_rename() evaluate defused R code (i.e. quoted expressions) according to the special rules of the tidyselect syntax. They power functions like dplyr::select(), dplyr::rename(), or tidyr::pivot_longer().

See the Get started vignette to learn how to use eval_select() and eval_rename() in your packages.

Usage

eval_rename(
  expr,
  data,
  env = caller_env(),
  ...,
  strict = TRUE,
  name_spec = NULL,
  allow_predicates = TRUE,
  error_call = caller_env()
)

eval_select(
  expr,
  data,
  env = caller_env(),
  ...,
  include = NULL,
  exclude = NULL,
  strict = TRUE,
  name_spec = NULL,
  allow_rename = TRUE,
  allow_empty = TRUE,
  allow_predicates = TRUE,
  error_arg = NULL,
  error_call = caller_env()
)

Arguments

expr

Defused R code describing a selection according to the tidyselect syntax.

data

A named list, data frame, or atomic vector. Technically, data can be any vector with names() and "[[" implementations.

env

The environment in which to evaluate expr. Discarded if expr is a quosure.

...

These dots are for future extensions and must be empty.

strict

If TRUE, out-of-bounds errors are thrown if expr attempts to select or rename a variable that doesn't exist. If FALSE, failed selections or renamings are ignored.

name_spec

A name specification describing how to combine or propagate names. This is used only in case nested c() expressions like c(foo = c(bar = starts_with("foo"))). See the name_spec argument of vctrs::vec_c() for a description of valid name specs.

allow_predicates

If TRUE (the default), it is ok for expr to use predicates (i.e. in where()). If FALSE, will error if expr uses a predicate. Will automatically be set to FALSE if data does not support predicates (as determined by tidyselect_data_has_predicates()).

error_call

The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument of abort() for more information.

include, exclude

Character vector of column names to always include or exclude from the selection.

allow_rename

If TRUE (the default), the renaming syntax c(foo = bar) is allowed. If FALSE, it causes an error. This is useful to implement purely selective behaviour.

allow_empty

If TRUE (the default), it is ok for expr to result in an empty selection. If FALSE, will error if expr yields an empty selection.

error_arg

Argument names for expr. These are used in error messages. (You can use "..." if expr = c(...)).

Details

The select and rename variants take the same types of inputs and have the same type of return value. However eval_rename() has a few extra constraints. It requires named inputs, and will fail if a data frame column is renamed to another existing column name. See the selecting versus renaming section in the syntax vignette for a description of the differences.

Value

A named vector of numeric locations, one for each of the selected elements.

The names are normally the same as in the input data, except when the user supplied named selections with c(). In the latter case, the names reflect the new names chosen by the user.

A given element may be selected multiple times under different names, in which case the vector might contain duplicate locations.

See Also

https://tidyselect.r-lib.org/articles/syntax.html or vignette("syntax", package = "tidyselect") for a technical description of the rules of evaluation.

Examples

library(rlang)

# Interpret defused code as selection:
x <- expr(mpg:cyl)
eval_select(x, mtcars)

# Interpret defused code as a renaming selection. All inputs must
# be named within `c()`:
try(eval_rename(expr(mpg), mtcars))
eval_rename(expr(c(foo = mpg)), mtcars)


# Within a function, use `enquo()` to defuse one argument:
my_function <- function(x, expr) {
  eval_select(enquo(expr), x)
}

# If your function takes dots, evaluate a defused call to `c(...)`
# with `expr(c(...))`:
my_function <- function(.x, ...) {
  eval_select(expr(c(...)), .x)
}

# If your function takes dots and a named argument, use `{{ }}`
# inside the defused expression to tunnel it inside the tidyselect DSL:
my_function <- function(.x, .expr, ...) {
  eval_select(expr(c({{ .expr }}, ...)), .x)
}

# Note that the trick above works because `expr({{ arg }})` is the
# same as `enquo(arg)`.

# Supply `error_arg` to improve the error message in case of
# unexpected empty selection:
select_not_empty <- function(x, cols) {
  eval_select(expr = enquo(cols), data = x, allow_empty = FALSE, error_arg = "cols")
}
try(select_not_empty(mtcars, cols = starts_with("vs2")))

# The evaluators return a named vector of locations. Here are
# examples of using these location vectors to implement `select()`
# and `rename()`:
select <- function(.x, ...) {
  pos <- eval_select(expr(c(...)), .x)
  set_names(.x[pos], names(pos))
}
rename <- function(.x, ...) {
  pos <- eval_rename(expr(c(...)), .x)
  names(.x)[pos] <- names(pos)
  .x
}

select(mtcars, mpg:cyl)
rename(mtcars, foo = mpg)

Select all variables or the last variable

Description

These functions are selection helpers.

  • everything() selects all variable. It is also useful in combination with other tidyselect operators.

  • last_col() selects the last variable.

Usage

everything(vars = NULL)

last_col(offset = 0L, vars = NULL)

Arguments

vars

A character vector of variable names. If not supplied, the variables are taken from the current selection context (as established by functions like select() or pivot_longer()).

offset

Set it to n to select the nth var from the end.

Examples

Selection helpers can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)
mtcars <- as_tibble(mtcars)

Use everything() to select all variables:

iris %>% select(everything())
#> # A tibble: 150 x 5
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#> 1          5.1         3.5          1.4         0.2 setosa 
#> 2          4.9         3            1.4         0.2 setosa 
#> 3          4.7         3.2          1.3         0.2 setosa 
#> 4          4.6         3.1          1.5         0.2 setosa 
#> # i 146 more rows

mtcars %>% pivot_longer(everything())
#> # A tibble: 352 x 2
#>   name  value
#>   <chr> <dbl>
#> 1 mpg      21
#> 2 cyl       6
#> 3 disp    160
#> 4 hp      110
#> # i 348 more rows

Use last_col() to select the last variable:

iris %>% select(last_col())
#> # A tibble: 150 x 1
#>   Species
#>   <fct>  
#> 1 setosa 
#> 2 setosa 
#> 3 setosa 
#> 4 setosa 
#> # i 146 more rows

mtcars %>% pivot_longer(last_col())
#> # A tibble: 32 x 12
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear name  value
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1  21       6   160   110  3.9   2.62  16.5     0     1     4 carb      4
#> 2  21       6   160   110  3.9   2.88  17.0     0     1     4 carb      4
#> 3  22.8     4   108    93  3.85  2.32  18.6     1     1     4 carb      1
#> 4  21.4     6   258   110  3.08  3.22  19.4     1     0     3 carb      1
#> # i 28 more rows

Supply an offset n to select a variable located n positions from the end:

mtcars %>% select(1:last_col(5))
#> # A tibble: 32 x 6
#>     mpg   cyl  disp    hp  drat    wt
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6   160   110  3.9   2.62
#> 2  21       6   160   110  3.9   2.88
#> 3  22.8     4   108    93  3.85  2.32
#> 4  21.4     6   258   110  3.08  3.22
#> # i 28 more rows

See Also

The selection language page, which includes links to other selection helpers.


FAQ - Note: Using an external vector in selections is ambiguous

Description

Ambiguity between columns and external variables

With selecting functions like dplyr::select() or tidyr::pivot_longer(), you can refer to variables by name:

mtcars %>% select(cyl, am, vs)
#> # A tibble: 32 x 3
#>     cyl    am    vs
#>   <dbl> <dbl> <dbl>
#> 1     6     1     0
#> 2     6     1     0
#> 3     4     1     1
#> 4     6     0     1
#> # i 28 more rows

mtcars %>% select(mpg:disp)
#> # A tibble: 32 x 3
#>     mpg   cyl  disp
#>   <dbl> <dbl> <dbl>
#> 1  21       6   160
#> 2  21       6   160
#> 3  22.8     4   108
#> 4  21.4     6   258
#> # i 28 more rows

For historical reasons, it is also possible to refer an external vector of variable names. You get the correct result, but with a warning informing you that selecting with an external variable is ambiguous because it is not clear whether you want a data frame column or an external object.

vars <- c("cyl", "am", "vs")
result <- mtcars %>% select(vars)
#> Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
#> i Please use `all_of()` or `any_of()` instead.
#> i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

We have decided to deprecate this particular approach to using external vectors because they introduce ambiguity. Imagine that the data frame contains a column with the same name as your external variable.

some_df <- mtcars[1:4, ]
some_df$vars <- 1:nrow(some_df)

These are very different objects but it isn’t a problem if the context forces you to be specific about where to find vars:

vars
#> [1] "cyl" "am"  "vs"

some_df$vars
#> [1] 1 2 3 4

In a selection context however, the column wins:

some_df %>% select(vars)
#> # A tibble: 4 x 1
#>    vars
#>   <int>
#> 1     1
#> 2     2
#> 3     3
#> 4     4

Fixing the ambiguity

To make your selection code more robust and silence the message, use all_of() to force the external vector:

some_df %>% select(all_of(vars))
#> # A tibble: 4 x 3
#>     cyl    am    vs
#>   <dbl> <dbl> <dbl>
#> 1     6     1     0
#> 2     6     1     0
#> 3     4     1     1
#> 4     6     0     1

For more information or if you have comments about this, please see the Github issue tracking the deprecation process.


FAQ - Error: Must be used within a selecting function

Description

Functions like starts_with(), contains() or matches() are selection helpers that only work in a selection context, e.g. dplyr::select() or the cols argument of tidyr::pivot_longer().

Using a selection helper anywhere else results in an error:

starts_with("foo")
#> Error:
#> ! `starts_with()` must be used within a *selecting* function.
#> i See <https://tidyselect.r-lib.org/reference/faq-selection-context.html> for
#>   details.

mtcars[contains("foo")]
#> Error:
#> ! `contains()` must be used within a *selecting* function.
#> i See <https://tidyselect.r-lib.org/reference/faq-selection-context.html> for
#>   details.

subset(mtcars, select = matches("foo"))
#> Error:
#> ! `matches()` must be used within a *selecting* function.
#> i See <https://tidyselect.r-lib.org/reference/faq-selection-context.html> for
#>   details.

If you see this error, you may have used a selection helper in the wrong place, possibly as the result of a typo (e.g. misplaced comma or wrong argument name). Alternatively, you may be deliberately trying to reduce duplication in your code by extracting out a selection into a variable:

my_vars <- c(name, species, ends_with("color"))
#> Error: object 'name' not found

To make this work you’ll need to do two things:

  • Wrap the whole thing in a function

  • Use any_of() or all_of() instead of bare variable names

my_vars <- function() {
  c(any_of(c("name", "species")), ends_with("color"))
}
dplyr::select(starwars, my_vars())
#> # A tibble: 87 x 5
#>   name           species hair_color skin_color  eye_color
#>   <chr>          <chr>   <chr>      <chr>       <chr>    
#> 1 Luke Skywalker Human   blond      fair        blue     
#> 2 C-3PO          Droid   <NA>       gold        yellow   
#> 3 R2-D2          Droid   <NA>       white, blue red      
#> 4 Darth Vader    Human   none       white       yellow   
#> # i 83 more rows

Selection language

Description

Overview of selection features:

Tidyverse selections implement a dialect of R where operators make it easy to select variables:

  • : for selecting a range of consecutive variables.

  • ! for taking the complement of a set of variables.

  • & and | for selecting the intersection or the union of two sets of variables.

  • c() for combining selections.

In addition, you can use selection helpers. Some helpers select specific columns:

Other helpers select variables by matching patterns in their names:

Or from variables stored in a character vector:

  • all_of(): Matches variable names in a character vector. All names must be present, otherwise an out-of-bounds error is thrown.

  • any_of(): Same as all_of(), except that no error is thrown for names that don't exist.

Or using a predicate function:

  • where(): Applies a function to all variables and selects those for which the function returns TRUE.

Simple examples

Here we show the usage for the basic selection operators. See the specific help pages to learn about helpers like starts_with().

The selection language can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars %>% select(height)
#> # A tibble: 87 x 1
#>   height
#>    <int>
#> 1    172
#> 2    167
#> 3     96
#> 4    202
#> # i 83 more rows

iris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6
#>   Sepal.Width Petal.Length Petal.Width Species name         value
#>         <dbl>        <dbl>       <dbl> <fct>   <chr>        <dbl>
#> 1         3.5          1.4         0.2 setosa  Sepal.Length   5.1
#> 2         3            1.4         0.2 setosa  Sepal.Length   4.9
#> 3         3.2          1.3         0.2 setosa  Sepal.Length   4.7
#> 4         3.1          1.5         0.2 setosa  Sepal.Length   4.6
#> # i 146 more rows

Select multiple variables by separating them with commas. Note how the order of columns is determined by the order of inputs:

starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#>   homeworld height  mass
#>   <chr>      <int> <dbl>
#> 1 Tatooine     172    77
#> 2 Tatooine     167    75
#> 3 Naboo         96    32
#> 4 Tatooine     202   136
#> # i 83 more rows

Functions like tidyr::pivot_longer() don't take variables with dots. In this case use c() to select multiple variables:

iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5
#>   Sepal.Width Petal.Width Species name         value
#>         <dbl>       <dbl> <fct>   <chr>        <dbl>
#> 1         3.5         0.2 setosa  Sepal.Length   5.1
#> 2         3.5         0.2 setosa  Petal.Length   1.4
#> 3         3           0.2 setosa  Sepal.Length   4.9
#> 4         3           0.2 setosa  Petal.Length   1.4
#> # i 296 more rows

Operators:

The : operator selects a range of consecutive variables:

starwars %>% select(name:mass)
#> # A tibble: 87 x 3
#>   name           height  mass
#>   <chr>           <int> <dbl>
#> 1 Luke Skywalker    172    77
#> 2 C-3PO             167    75
#> 3 R2-D2              96    32
#> 4 Darth Vader       202   136
#> # i 83 more rows

The ! operator negates a selection:

starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#>   hair_color skin_color  eye_color birth_year sex   gender    homeworld species
#>   <chr>      <chr>       <chr>          <dbl> <chr> <chr>     <chr>     <chr>  
#> 1 blond      fair        blue            19   male  masculine Tatooine  Human  
#> 2 <NA>       gold        yellow         112   none  masculine Tatooine  Droid  
#> 3 <NA>       white, blue red             33   none  masculine Naboo     Droid  
#> 4 none       white       yellow          41.9 male  masculine Tatooine  Human  
#> # i 83 more rows
#> # i 3 more variables: films <list>, vehicles <list>, starships <list>

iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#>   Sepal.Width Petal.Width Species
#>         <dbl>       <dbl> <fct>  
#> 1         3.5         0.2 setosa 
#> 2         3           0.2 setosa 
#> 3         3.2         0.2 setosa 
#> 4         3.1         0.2 setosa 
#> # i 146 more rows

iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#>   Sepal.Length Petal.Length Species
#>          <dbl>        <dbl> <fct>  
#> 1          5.1          1.4 setosa 
#> 2          4.9          1.4 setosa 
#> 3          4.7          1.3 setosa 
#> 4          4.6          1.5 setosa 
#> # i 146 more rows

& and | take the intersection or the union of two selections:

iris %>% select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#>   Petal.Width
#>         <dbl>
#> 1         0.2
#> 2         0.2
#> 3         0.2
#> 4         0.2
#> # i 146 more rows

iris %>% select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#>   Petal.Length Petal.Width Sepal.Width
#>          <dbl>       <dbl>       <dbl>
#> 1          1.4         0.2         3.5
#> 2          1.4         0.2         3  
#> 3          1.3         0.2         3.2
#> 4          1.5         0.2         3.1
#> # i 146 more rows

To take the difference between two selections, combine the & and ! operators:

iris %>% select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#>   Petal.Length
#>          <dbl>
#> 1          1.4
#> 2          1.4
#> 3          1.3
#> 4          1.5
#> # i 146 more rows

Details

The order of selected columns is determined by the inputs.

  • all_of(c("foo", "bar")) selects "foo" first.

  • c(starts_with("c"), starts_with("d")) selects all columns starting with "c" first, then all columns starting with "d".


Peek at variables in the selection context

Description

  • peek_vars() returns the vector of names of the variables currently available for selection.

  • peek_data() returns the whole input vector (only available with eval_select()).

Read the Get started for examples of how to create selection helpers with peek_vars().

The variable names in a selection context are registered automatically by eval_select() and eval_rename() for the duration of the evaluation. peek_vars() is the glue that connects selection helpers to the current selection context.

Usage

peek_vars(..., fn = NULL)

peek_data(..., fn = NULL)

Arguments

...

These dots are for future extensions and must be empty.

fn

The name of the function to use in error messages when the helper is used in the wrong context. If not supplied, a generic error message is used instead.


Select variables that match a pattern

Description

These selection helpers match variables according to a given pattern.

Usage

starts_with(match, ignore.case = TRUE, vars = NULL)

ends_with(match, ignore.case = TRUE, vars = NULL)

contains(match, ignore.case = TRUE, vars = NULL)

matches(match, ignore.case = TRUE, perl = TRUE, vars = NULL)

num_range(
  prefix,
  range,
  suffix = "",
  width = NULL,
  ...,
  cross = FALSE,
  vars = NULL
)

Arguments

match

A character vector. If length > 1, the union of the matches is taken.

For starts_with(), ends_with(), and contains() this is an exact match. For matches() this is a regular expression, and can be a stringr pattern.

ignore.case

If TRUE, the default, ignores case when matching names.

vars

A character vector of variable names. If not supplied, the variables are taken from the current selection context (as established by functions like select() or pivot_longer()).

perl

Should Perl-compatible regexps be used?

prefix, suffix

A prefix/suffix added before/after the numeric range.

range

A sequence of integers, like 1:5.

width

Optionally, the "width" of the numeric range. For example, a range of 2 gives "01", a range of three "001", etc.

...

These dots are for future extensions and must be empty.

cross

Whether to take the cartesian product of prefix, range, and suffix. If FALSE, the default, these arguments are recycled using tidyverse rules.

Examples

Selection helpers can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

starts_with() selects all variables matching a prefix and ends_with() matches a suffix:

iris %>% select(starts_with("Sepal"))
#> # A tibble: 150 x 2
#>   Sepal.Length Sepal.Width
#>          <dbl>       <dbl>
#> 1          5.1         3.5
#> 2          4.9         3  
#> 3          4.7         3.2
#> 4          4.6         3.1
#> # i 146 more rows

iris %>% select(ends_with("Width"))
#> # A tibble: 150 x 2
#>   Sepal.Width Petal.Width
#>         <dbl>       <dbl>
#> 1         3.5         0.2
#> 2         3           0.2
#> 3         3.2         0.2
#> 4         3.1         0.2
#> # i 146 more rows

You can supply multiple prefixes or suffixes. Note how the order of variables depends on the order of the suffixes and prefixes:

iris %>% select(starts_with(c("Petal", "Sepal")))
#> # A tibble: 150 x 4
#>   Petal.Length Petal.Width Sepal.Length Sepal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          1.4         0.2          5.1         3.5
#> 2          1.4         0.2          4.9         3  
#> 3          1.3         0.2          4.7         3.2
#> 4          1.5         0.2          4.6         3.1
#> # i 146 more rows

iris %>% select(ends_with(c("Width", "Length")))
#> # A tibble: 150 x 4
#>   Sepal.Width Petal.Width Sepal.Length Petal.Length
#>         <dbl>       <dbl>        <dbl>        <dbl>
#> 1         3.5         0.2          5.1          1.4
#> 2         3           0.2          4.9          1.4
#> 3         3.2         0.2          4.7          1.3
#> 4         3.1         0.2          4.6          1.5
#> # i 146 more rows

contains() selects columns whose names contain a word:

iris %>% select(contains("al"))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

starts_with(), ends_with(), and contains() do not use regular expressions. To select with a regexp use matches():

# [pt] is matched literally:
iris %>% select(contains("[pt]al"))
#> # A tibble: 150 x 0

# [pt] is interpreted as a regular expression
iris %>% select(matches("[pt]al"))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

starts_with() selects all variables starting with a prefix. To select a range, use num_range(). Compare:

billboard %>% select(starts_with("wk"))
#> # A tibble: 317 x 76
#>     wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8   wk9  wk10  wk11  wk12  wk13
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1    87    82    72    77    87    94    99    NA    NA    NA    NA    NA    NA
#> 2    91    87    92    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
#> 3    81    70    68    67    66    57    54    53    51    51    51    51    47
#> 4    76    76    72    69    67    65    55    59    62    61    61    59    61
#> # i 313 more rows
#> # i 63 more variables: wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>,
#> #   wk18 <dbl>, wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, ...

billboard %>% select(num_range("wk", 10:15))
#> # A tibble: 317 x 6
#>    wk10  wk11  wk12  wk13  wk14  wk15
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1    NA    NA    NA    NA    NA    NA
#> 2    NA    NA    NA    NA    NA    NA
#> 3    51    51    51    47    44    38
#> 4    61    61    59    61    66    72
#> # i 313 more rows

See Also

The selection language page, which includes links to other selection helpers.


tidyselect methods for custom types

Description

  • tidyselect_data_proxy() returns a data frame.

  • tidyselect_data_has_predicates() returns TRUE or FALSE

If your doesn't support predicate functions, return a 0-row data frame from tidyselect_data_proxy() and FALSE from tidyselect_data_has_predicates().

Usage

tidyselect_data_proxy(x)

tidyselect_data_has_predicates(x)

Arguments

x

A data-frame like object passed to eval_select(), eval_rename(), and friends.


Select variables with a function

Description

This selection helper selects the variables for which a function returns TRUE.

Usage

where(fn)

Arguments

fn

A function that returns TRUE or FALSE (technically, a predicate function). Can also be a purrr-like formula.

Examples

Selection helpers can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

where() takes a function and returns all variables for which the function returns TRUE:

is.factor(iris[[4]])
#> [1] FALSE

is.factor(iris[[5]])
#> [1] TRUE

iris %>% select(where(is.factor))
#> # A tibble: 150 x 1
#>   Species
#>   <fct>  
#> 1 setosa 
#> 2 setosa 
#> 3 setosa 
#> 4 setosa 
#> # i 146 more rows

is.numeric(iris[[4]])
#> [1] TRUE

is.numeric(iris[[5]])
#> [1] FALSE

iris %>% select(where(is.numeric))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

The formula shorthand

You can use purrr-like formulas as a shortcut for creating a function on the spot. These expressions are equivalent:

iris %>% select(where(is.numeric))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

iris %>% select(where(function(x) is.numeric(x)))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

iris %>% select(where(~ is.numeric(.x)))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

The shorthand is useful for adding logic inline. Here we select all numeric variables whose mean is greater than 3.5:

iris %>% select(where(~ is.numeric(.x) && mean(.x) > 3.5))
#> # A tibble: 150 x 2
#>   Sepal.Length Petal.Length
#>          <dbl>        <dbl>
#> 1          5.1          1.4
#> 2          4.9          1.4
#> 3          4.7          1.3
#> 4          4.6          1.5
#> # i 146 more rows