
Package: testthat (via r-universe)
June 12, 2024

Title Unit Testing for R

Version 3.2.1.9000

Description Software testing is important, but, in part because it is
frustrating and boring, many of us avoid it. 'testthat' is a
testing framework for R that is easy to learn and use, and
integrates with your existing 'workflow'.

License MIT + file LICENSE

URL https://testthat.r-lib.org, https://github.com/r-lib/testthat

BugReports https://github.com/r-lib/testthat/issues

Depends R (>= 3.6.0)

Imports brio (>= 1.1.3), callr (>= 3.7.3), cli (>= 3.6.1), desc (>=
1.4.2), digest (>= 0.6.33), evaluate (>= 0.21), jsonlite (>=
1.8.7), lifecycle (>= 1.0.3), magrittr (>= 2.0.3), methods,
pkgload (>= 1.3.2.1), praise (>= 1.0.0), processx (>= 3.8.2),
ps (>= 1.7.5), R6 (>= 2.5.1), rlang (>= 1.1.1), utils, waldo
(>= 0.5.1), withr (>= 2.5.0)

Suggests covr, curl (>= 0.9.5), diffviewer (>= 0.1.0), knitr,
rmarkdown, rstudioapi, shiny, usethis, vctrs (>= 0.1.0), xml2

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first watcher, parallel*

Encoding UTF-8

Roxygen list(markdown = TRUE, r6 = FALSE)

RoxygenNote 7.2.3

Repository https://r-lib.r-universe.dev

RemoteUrl https://github.com/r-lib/testthat

RemoteRef HEAD

RemoteSha f060ccec365e1343ae926c53c215a423b295d7a8

1

https://testthat.r-lib.org
https://github.com/r-lib/testthat
https://github.com/r-lib/testthat/issues

2 Contents

Contents
auto_test . 3
auto_test_package . 4
CheckReporter . 4
comparison-expectations . 5
DebugReporter . 6
describe . 6
equality-expectations . 7
expect . 9
expect_error . 10
expect_invisible . 13
expect_length . 14
expect_named . 15
expect_no_error . 16
expect_output . 17
expect_setequal . 18
expect_silent . 19
expect_snapshot . 20
expect_snapshot_file . 22
expect_snapshot_value . 24
expect_vector . 25
fail . 26
FailReporter . 26
inheritance-expectations . 27
is_testing . 28
JunitReporter . 29
ListReporter . 29
local_mocked_bindings . 30
local_test_context . 32
LocationReporter . 34
logical-expectations . 34
MinimalReporter . 35
MultiReporter . 36
ProgressReporter . 36
RStudioReporter . 36
set_state_inspector . 37
SilentReporter . 38
skip . 38
snapshot_accept . 40
StopReporter . 40
SummaryReporter . 41
TapReporter . 41
TeamcityReporter . 42
teardown_env . 42
test_file . 42
test_package . 43
test_path . 44

auto_test 3

test_that . 45
use_catch . 46

Index 49

auto_test Watches code and tests for changes, rerunning tests as appropriate.

Description

The idea behind auto_test() is that you just leave it running while you develop your code. Every
time you save a file it will be automatically tested and you can easily see if your changes have
caused any test failures.

Usage

auto_test(
code_path,
test_path,
reporter = default_reporter(),
env = test_env(),
hash = TRUE

)

Arguments

code_path path to directory containing code
test_path path to directory containing tests
reporter test reporter to use
env environment in which to execute test suite.
hash Passed on to watch(). When FALSE, uses less accurate modification time

stamps, but those are faster for large files.

Details

The current strategy for rerunning tests is as follows:

• if any code has changed, then those files are reloaded and all tests rerun
• otherwise, each new or modified test is run

In the future, auto_test() might implement one of the following more intelligent alternatives:

• Use codetools to build up dependency tree and then rerun tests only when a dependency
changes.

• Mimic ruby’s autotest and rerun only failing tests until they pass, and then rerun all tests.

See Also

auto_test_package()

4 CheckReporter

auto_test_package Watches a package for changes, rerunning tests as appropriate.

Description

Watches a package for changes, rerunning tests as appropriate.

Usage

auto_test_package(pkg = ".", reporter = default_reporter(), hash = TRUE)

Arguments

pkg path to package

reporter test reporter to use

hash Passed on to watch(). When FALSE, uses less accurate modification time
stamps, but those are faster for large files.

See Also

auto_test() for details on how method works

CheckReporter Check reporter: 13 line summary of problems

Description
R CMD check displays only the last 13 lines of the result, so this report is designed to ensure that
you see something useful there.

See Also

Other reporters: DebugReporter, FailReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

comparison-expectations 5

comparison-expectations

Does code return a number greater/less than the expected value?

Description

Does code return a number greater/less than the expected value?

Usage

expect_lt(object, expected, label = NULL, expected.label = NULL)

expect_lte(object, expected, label = NULL, expected.label = NULL)

expect_gt(object, expected, label = NULL, expected.label = NULL)

expect_gte(object, expected, label = NULL, expected.label = NULL)

Arguments

object, expected
A value to compare and its expected bound.

label, expected.label
Used to customise failure messages. For expert use only.

See Also

Other expectations: equality-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

a <- 9
expect_lt(a, 10)

Not run:
expect_lt(11, 10)

End(Not run)

a <- 11
expect_gt(a, 10)
Not run:
expect_gt(9, 10)

End(Not run)

6 describe

DebugReporter Test reporter: start recovery.

Description

This reporter will call a modified version of recover() on all broken expectations.

See Also

Other reporters: CheckReporter, FailReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

describe describe: a BDD testing language

Description

A simple behavior-driven development (BDD) domain-specific language for writing tests. The
language is similar to RSpec for Ruby or Mocha for JavaScript. BDD tests read like sentences and
it should thus be easier to understand what the specification of a function/component is.

Usage

describe(description, code)

it(description, code = NULL)

Arguments

description description of the feature

code test code containing the specs

Details

Tests using the describe syntax not only verify the tested code, but also document its intended
behaviour. Each describe block specifies a larger component or function and contains a set of
specifications. A specification is defined by an it block. Each it block functions as a test and is
evaluated in its own environment. You can also have nested describe blocks.

This test syntax helps to test the intended behaviour of your code. For example: you want to write a
new function for your package. Try to describe the specification first using describe, before your
write any code. After that, you start to implement the tests for each specification (i.e. the it block).

Use describe to verify that you implement the right things and use test_that() to ensure you do
the things right.

https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Domain-specific_language
https://rspec.info/
https://mochajs.org/

equality-expectations 7

Examples

describe("matrix()", {
it("can be multiplied by a scalar", {
m1 <- matrix(1:4, 2, 2)
m2 <- m1 * 2
expect_equal(matrix(1:4 * 2, 2, 2), m2)

})
it("can have not yet tested specs")

})

Nested specs:
code
addition <- function(a, b) a + b
division <- function(a, b) a / b

specs
describe("math library", {

describe("addition()", {
it("can add two numbers", {

expect_equal(1 + 1, addition(1, 1))
})

})
describe("division()", {

it("can divide two numbers", {
expect_equal(10 / 2, division(10, 2))

})
it("can handle division by 0") #not yet implemented

})
})

equality-expectations Does code return the expected value?

Description

These functions provide two levels of strictness when comparing a computation to a reference value.
expect_identical() is the baseline; expect_equal() relaxes the test to ignore small numeric
differences.

In the 2nd edition, expect_identical() uses identical() and expect_equal uses all.equal().
In the 3rd edition, both functions use waldo. They differ only in that expect_equal() sets tolerance
= testthat_tolerance() so that small floating point differences are ignored; this also implies that
(e.g.) 1 and 1L are treated as equal.

Usage

expect_equal(
object,
expected,

https://github.com/r-lib/waldo

8 equality-expectations

...,
tolerance = if (edition_get() >= 3) testthat_tolerance(),
info = NULL,
label = NULL,
expected.label = NULL

)

expect_identical(
object,
expected,
info = NULL,
label = NULL,
expected.label = NULL,
...

)

Arguments

object, expected
Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

... 3e: passed on to waldo::compare(). See its docs to see other ways to control
comparison.
2e: passed on to compare()/identical().

tolerance 3e: passed on to waldo::compare(). If non-NULL, will ignore small floating
point differences. It uses same algorithm as all.equal() so the tolerance is
usually relative (i.e. mean(abs(x - y) / mean(abs(y)) < tolerance), except
when the differences are very small, when it becomes absolute (i.e. mean(abs(x - y) < tolerance).
See waldo documentation for more details.
2e: passed on to compare(), if set. It’s hard to reason about exactly what tol-
erance means because depending on the precise code path it could be either an
absolute or relative tolerance.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label, expected.label
Used to customise failure messages. For expert use only.

See Also

• expect_setequal()/expect_mapequal() to test for set equality.

• expect_reference() to test if two names point to same memory address.

Other expectations: comparison-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

expect 9

Examples

a <- 10
expect_equal(a, 10)

Use expect_equal() when testing for numeric equality
Not run:
expect_identical(sqrt(2) ^ 2, 2)

End(Not run)
expect_equal(sqrt(2) ^ 2, 2)

expect The building block of all expect_ functions

Description

Call expect() when writing your own expectations. See vignette("custom-expectation") for
details.

Usage

expect(
ok,
failure_message,
info = NULL,
srcref = NULL,
trace = NULL,
trace_env = caller_env()

)

Arguments

ok TRUE or FALSE indicating if the expectation was successful.
failure_message

Message to show if the expectation failed.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

srcref Location of the failure. Should only needed to be explicitly supplied when you
need to forward a srcref captured elsewhere.

trace An optional backtrace created by rlang::trace_back(). When supplied, the
expectation is displayed with the backtrace.

trace_env If is.null(trace), this is used to automatically generate a traceback running
from test_code()/test_file() to trace_env. You’ll generally only need to
set this if you’re wrapping an expectation inside another function.

10 expect_error

Details

While expect() creates and signals an expectation in one go, exp_signal() separately signals an
expectation that you have manually created with new_expectation(). Expectations are signalled
with the following protocol:

• If the expectation is a failure or an error, it is signalled with base::stop(). Otherwise, it is
signalled with base::signalCondition().

• The continue_test restart is registered. When invoked, failing expectations are ignored and
normal control flow is resumed to run the other tests.

Value

An expectation object. Signals the expectation condition with a continue_test restart.

See Also

exp_signal()

expect_error Does code throw an error, warning, message, or other condition?

Description

expect_error(), expect_warning(), expect_message(), and expect_condition() check that
code throws an error, warning, message, or condition with a message that matches regexp, or a
class that inherits from class. See below for more details.

In the 3rd edition, these functions match (at most) a single condition. All additional and non-
matching (if regexp or class are used) conditions will bubble up outside the expectation. If these
additional conditions are important you’ll need to catch them with additional expect_message()/expect_warning()
calls; if they’re unimportant you can ignore with suppressMessages()/suppressWarnings().

It can be tricky to test for a combination of different conditions, such as a message followed by an
error. expect_snapshot() is often an easier alternative for these more complex cases.

Usage

expect_error(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

expect_warning(

expect_error 11

object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_message(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_condition(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the error
message.

• If NULL, the default, asserts that there should be an error, but doesn’t test for
a specific value.

• If NA, asserts that there should be no errors, but we now recommend using
expect_no_error() and friends instead.

Note that you should only use message with errors/warnings/messages that you
generate. Avoid tests that rely on the specific text generated by another pack-
age since this can easily change. If you do need to test text generated by another
package, either protect the test with skip_on_cran() or use expect_snapshot().

12 expect_error

class Instead of supplying a regular expression, you can also supply a class name.
This is useful for "classed" conditions.

... Arguments passed on to expect_match

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular
expressions). Overrides perl.

perl logical. Should Perl-compatible regexps be used?

inherit Whether to match regexp and class across the ancestry of chained errors.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

all DEPRECATED If you need to test multiple warnings/messages you now need
to use multiple calls to expect_message()/ expect_warning()

Value

If regexp = NA, the value of the first argument; otherwise the captured condition.

Testing message vs class

When checking that code generates an error, it’s important to check that the error is the one you
expect. There are two ways to do this. The first way is the simplest: you just provide a regexp that
match some fragment of the error message. This is easy, but fragile, because the test will fail if the
error message changes (even if its the same error).

A more robust way is to test for the class of the error, if it has one. You can learn more about custom
conditions at https://adv-r.hadley.nz/conditions.html#custom-conditions, but in short,
errors are S3 classes and you can generate a custom class and check for it using class instead of
regexp.

If you are using expect_error() to check that an error message is formatted in such a way that it
makes sense to a human, we recommend using expect_snapshot() instead.

See Also

expect_no_error(), expect_no_warning(), expect_no_message(), and expect_no_condition()
to assert that code runs without errors/warnings/messages/conditions.

Other expectations: comparison-expectations, equality-expectations, expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations, logical-expectations

Examples

Errors --
f <- function() stop("My error!")
expect_error(f())
expect_error(f(), "My error!")

You can use the arguments of grepl to control the matching
expect_error(f(), "my error!", ignore.case = TRUE)

https://adv-r.hadley.nz/conditions.html#custom-conditions

expect_invisible 13

Note that `expect_error()` returns the error object so you can test
its components if needed
err <- expect_error(rlang::abort("a", n = 10))
expect_equal(err$n, 10)

Warnings --
f <- function(x) {

if (x < 0) {
warning("*x* is already negative")
return(x)

}
-x

}
expect_warning(f(-1))
expect_warning(f(-1), "already negative")
expect_warning(f(1), NA)

To test message and output, store results to a variable
expect_warning(out <- f(-1), "already negative")
expect_equal(out, -1)

Messages --
f <- function(x) {

if (x < 0) {
message("*x* is already negative")
return(x)

}

-x
}
expect_message(f(-1))
expect_message(f(-1), "already negative")
expect_message(f(1), NA)

expect_invisible Does code return a visible or invisible object?

Description

Use this to test whether a function returns a visible or invisible output. Typically you’ll use this to
check that functions called primarily for their side-effects return their data argument invisibly.

Usage

expect_invisible(call, label = NULL)

expect_visible(call, label = NULL)

14 expect_length

Arguments

call A function call.

label Used to customise failure messages. For expert use only.

Value

The evaluated call, invisibly.

Examples

expect_invisible(x <- 10)
expect_visible(x)

Typically you'll assign the result of the expectation so you can
also check that the value is as you expect.
greet <- function(name) {

message("Hi ", name)
invisible(name)

}
out <- expect_invisible(greet("Hadley"))
expect_equal(out, "Hadley")

expect_length Does code return a vector with the specified length?

Description

Does code return a vector with the specified length?

Usage

expect_length(object, n)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

n Expected length.

See Also

expect_vector() to make assertions about the "size" of a vector

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

expect_named 15

Examples

expect_length(1, 1)
expect_length(1:10, 10)

Not run:
expect_length(1:10, 1)

End(Not run)

expect_named Does code return a vector with (given) names?

Description

You can either check for the presence of names (leaving expected blank), specific names (by
supplying a vector of names), or absence of names (with NULL).

Usage

expect_named(
object,
expected,
ignore.order = FALSE,
ignore.case = FALSE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

expected Character vector of expected names. Leave missing to match any names. Use
NULL to check for absence of names.

ignore.order If TRUE, sorts names before comparing to ignore the effect of order.

ignore.case If TRUE, lowercases all names to ignore the effect of case.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

16 expect_no_error

Examples

x <- c(a = 1, b = 2, c = 3)
expect_named(x)
expect_named(x, c("a", "b", "c"))

Use options to control sensitivity
expect_named(x, c("B", "C", "A"), ignore.order = TRUE, ignore.case = TRUE)

Can also check for the absence of names with NULL
z <- 1:4
expect_named(z, NULL)

expect_no_error Does code run without error, warning, message, or other condition?

Description

These expectations are the opposite of expect_error(), expect_warning(), expect_message(),
and expect_condition(). They assert the absence of an error, warning, or message, respectively.

Usage

expect_no_error(object, ..., message = NULL, class = NULL)

expect_no_warning(object, ..., message = NULL, class = NULL)

expect_no_message(object, ..., message = NULL, class = NULL)

expect_no_condition(object, ..., message = NULL, class = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

... These dots are for future extensions and must be empty.

message, class The default, message = NULL, class = NULL, will fail if there is any er-
ror/warning/message/condition.
In many cases, particularly when testing warnings and messages, you will want
to be more specific about the condition you are hoping not to see, i.e. the con-
dition that motivated you to write the test. Similar to expect_error() and
friends, you can specify the message (a regular expression that the message of
the condition must match) and/or the class (a class the condition must inherit
from). This ensures that the message/warnings you don’t want never recur, while
allowing new messages/warnings to bubble up for you to deal with.
Note that you should only use message with errors/warnings/messages that you
generate, or that base R generates (which tend to be stable). Avoid tests that rely

expect_output 17

on the specific text generated by another package since this can easily change.
If you do need to test text generated by another package, either protect the test
with skip_on_cran() or use expect_snapshot().

Examples

expect_no_warning(1 + 1)

foo <- function(x) {
warning("This is a problem!")

}

warning doesn't match so bubbles up:
expect_no_warning(foo(), message = "bananas")

warning does match so causes a failure:
try(expect_no_warning(foo(), message = "problem"))

expect_output Does code print output to the console?

Description

Test for output produced by print() or cat(). This is best used for very simple output; for more
complex cases use expect_snapshot().

Usage

expect_output(
object,
regexp = NULL,
...,
info = NULL,
label = NULL,
width = 80

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the output.
• If NULL, the default, asserts that there should output, but doesn’t check for

a specific value.
• If NA, asserts that there should be no output.

18 expect_setequal

... Arguments passed on to expect_match

all Should all elements of actual value match regexp (TRUE), or does only
one need to match (FALSE).

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular
expressions). Overrides perl.

perl logical. Should Perl-compatible regexps be used?

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

width Number of characters per line of output. This does not inherit from getOption("width")
so that tests always use the same output width, minimising spurious differences.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

str(mtcars)
expect_output(str(mtcars), "32 obs")
expect_output(str(mtcars), "11 variables")

You can use the arguments of grepl to control the matching
expect_output(str(mtcars), "11 VARIABLES", ignore.case = TRUE)
expect_output(str(mtcars), "$ mpg", fixed = TRUE)

expect_setequal Does code return a vector containing the expected values?

Description

• expect_setequal(x, y) tests that every element of x occurs in y, and that every element of
y occurs in x.

• expect_contains(x, y) tests that x contains every element of y (i.e. y is a subset of x).

• expect_in(x, y) tests every element of x is in y (i.e. x is a subset of y).

• expect_mapequal(x, y) tests that x and y have the same names, and that x[names(y)]
equals y.

expect_silent 19

Usage

expect_setequal(object, expected)

expect_mapequal(object, expected)

expect_contains(object, expected)

expect_in(object, expected)

Arguments

object, expected
Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

Details

Note that expect_setequal() ignores names, and you will be warned if both object and expected
have them.

Examples

expect_setequal(letters, rev(letters))
show_failure(expect_setequal(letters[-1], rev(letters)))

x <- list(b = 2, a = 1)
expect_mapequal(x, list(a = 1, b = 2))
show_failure(expect_mapequal(x, list(a = 1)))
show_failure(expect_mapequal(x, list(a = 1, b = "x")))
show_failure(expect_mapequal(x, list(a = 1, b = 2, c = 3)))

expect_silent Does code execute silently?

Description

Checks that the code produces no output, messages, or warnings.

Usage

expect_silent(object)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

20 expect_snapshot

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
inheritance-expectations, logical-expectations

Examples

expect_silent("123")

f <- function() {
message("Hi!")
warning("Hey!!")
print("OY!!!")

}
Not run:
expect_silent(f())

End(Not run)

expect_snapshot Snapshot testing

Description

Snapshot tests (aka golden tests) are similar to unit tests except that the expected result is stored in
a separate file that is managed by testthat. Snapshot tests are useful for when the expected value is
large, or when the intent of the code is something that can only be verified by a human (e.g. this is
a useful error message). Learn more in vignette("snapshotting").

expect_snapshot() runs code as if you had executed it at the console, and records the results,
including output, messages, warnings, and errors. If you just want to compare the result, try
expect_snapshot_value().

Usage

expect_snapshot(
x,
cran = FALSE,
error = FALSE,
transform = NULL,
variant = NULL,
cnd_class = FALSE

)

expect_snapshot 21

Arguments

x Code to evaluate.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

error Do you expect the code to throw an error? The expectation will fail (even on
CRAN) if an unexpected error is thrown or the expected error is not thrown.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant If non-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string suitable for use as a directory name.

You can use variants to deal with cases where the snapshot output varies and you
want to capture and test the variations. Common use cases include variations for
operating system, R version, or version of key dependency. Variants are an
advanced feature. When you use them, you’ll need to carefully think about your
testing strategy to ensure that all important variants are covered by automated
tests, and ensure that you have a way to get snapshot changes out of your CI
system and back into the repo.

cnd_class Whether to include the class of messages, warnings, and errors in the snapshot.
Only the most specific class is included, i.e. the first element of class(cnd).

Workflow

The first time that you run a snapshot expectation it will run x, capture the results, and record them
in tests/testthat/_snaps/{test}.md. Each test file gets its own snapshot file, e.g. test-foo.R
will get _snaps/foo.md.

It’s important to review the Markdown files and commit them to git. They are designed to be human
readable, and you should always review new additions to ensure that the salient information has
been captured. They should also be carefully reviewed in pull requests, to make sure that snapshots
have updated in the expected way.

On subsequent runs, the result of x will be compared to the value stored on disk. If it’s different,
the expectation will fail, and a new file _snaps/{test}.new.md will be created. If the change was
deliberate, you can approve the change with snapshot_accept() and then the tests will pass the
next time you run them.

Note that snapshotting can only work when executing a complete test file (with test_file(),
test_dir(), or friends) because there’s otherwise no way to figure out the snapshot path. If you
run snapshot tests interactively, they’ll just display the current value.

22 expect_snapshot_file

expect_snapshot_file Snapshot testing for whole files

Description

Whole file snapshot testing is designed for testing objects that don’t have a convenient textual
representation, with initial support for images (.png, .jpg, .svg), data frames (.csv), and text files
(.R, .txt, .json, ...).

The first time expect_snapshot_file() is run, it will create _snaps/{test}/{name}.{ext} con-
taining reference output. Future runs will be compared to this reference: if different, the test will
fail and the new results will be saved in _snaps/{test}/{name}.new.{ext}. To review failures,
call snapshot_review().

We generally expect this function to be used via a wrapper that takes care of ensuring that output is
as reproducible as possible, e.g. automatically skipping tests where it’s known that images can’t be
reproduced exactly.

Usage

expect_snapshot_file(
path,
name = basename(path),
binary = lifecycle::deprecated(),
cran = FALSE,
compare = NULL,
transform = NULL,
variant = NULL

)

announce_snapshot_file(path, name = basename(path))

compare_file_binary(old, new)

compare_file_text(old, new)

Arguments

path Path to file to snapshot. Optional for announce_snapshot_file() if name is
supplied.

name Snapshot name, taken from path by default.

binary [Deprecated] Please use the compare argument instead.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

expect_snapshot_file 23

compare A function used to compare the snapshot files. It should take two inputs, the
paths to the old and new snapshot, and return either TRUE or FALSE. This defaults
to compare_file_text if name has extension .r, .R, .Rmd, .md, or .txt, and
otherwise uses compare_file_binary.
compare_file_binary() compares byte-by-byte and compare_file_text()
compares lines-by-line, ignoring the difference between Windows and Mac/Linux
line endings.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant If not-NULL, results will be saved in _snaps/{variant}/{test}/{name}.{ext}.
This allows you to create different snapshots for different scenarios, like differ-
ent operating systems or different R versions.

old, new Paths to old and new snapshot files.

Announcing snapshots

testthat automatically detects dangling snapshots that have been written to the _snaps directory
but which no longer have corresponding R code to generate them. These dangling files are au-
tomatically deleted so they don’t clutter the snapshot directory. However we want to preserve
snapshot files when the R code wasn’t executed because of an unexpected error or because of
a skip(). Let testthat know about these files by calling announce_snapshot_file() before
expect_snapshot_file().

Examples

To use expect_snapshot_file() you'll typically need to start by writing
a helper function that creates a file from your code, returning a path
save_png <- function(code, width = 400, height = 400) {

path <- tempfile(fileext = ".png")
png(path, width = width, height = height)
on.exit(dev.off())
code

path
}
path <- save_png(plot(1:5))
path

Not run:
expect_snapshot_file(save_png(hist(mtcars$mpg)), "plot.png")

End(Not run)

You'd then also provide a helper that skips tests where you can't
be sure of producing exactly the same output
expect_snapshot_plot <- function(name, code) {

Other packages might affect results
skip_if_not_installed("ggplot2", "2.0.0")
Or maybe the output is different on some operation systems

24 expect_snapshot_value

skip_on_os("windows")
You'll need to carefully think about and experiment with these skips

name <- paste0(name, ".png")

Announce the file before touching `code`. This way, if `code`
unexpectedly fails or skips, testthat will not auto-delete the
corresponding snapshot file.
announce_snapshot_file(name = name)

path <- save_png(code)
expect_snapshot_file(path, name)

}

expect_snapshot_value Snapshot testing for values

Description

Captures the result of function, flexibly serializing it into a text representation that’s stored in a
snapshot file. See expect_snapshot() for more details on snapshot testing.

Usage

expect_snapshot_value(
x,
style = c("json", "json2", "deparse", "serialize"),
cran = FALSE,
tolerance = testthat_tolerance(),
...,
variant = NULL

)

Arguments

x Code to evaluate.

style Serialization style to use:

• json uses jsonlite::fromJSON() and jsonlite::toJSON(). This pro-
duces the simplest output but only works for relatively simple objects.

• json2 uses jsonlite::serializeJSON() and jsonlite::unserializeJSON()
which are more verbose but work for a wider range of type.

• deparse uses deparse(), which generates a depiction of the object using
R code.

• serialize() produces a binary serialization of the object using serialize().
This is all but guaranteed to work for any R object, but produces a com-
pletely opaque serialization.

expect_vector 25

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

tolerance Numerical tolerance: any differences (in the sense of base::all.equal())
smaller than this value will be ignored.
The default tolerance is sqrt(.Machine$double.eps), unless long doubles are
not available, in which case the test is skipped.

... Passed on to waldo::compare() so you can control the details of the compari-
son.

variant If non-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string suitable for use as a directory name.
You can use variants to deal with cases where the snapshot output varies and you
want to capture and test the variations. Common use cases include variations for
operating system, R version, or version of key dependency. Variants are an
advanced feature. When you use them, you’ll need to carefully think about your
testing strategy to ensure that all important variants are covered by automated
tests, and ensure that you have a way to get snapshot changes out of your CI
system and back into the repo.

expect_vector Does code return a vector with the expected size and/or prototype?

Description

expect_vector() is a thin wrapper around vctrs::vec_assert(), converting the results of that
function in to the expectations used by testthat. This means that it used the vctrs of ptype (proto-
type) and size. See details in https://vctrs.r-lib.org/articles/type-size.html

Usage

expect_vector(object, ptype = NULL, size = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

ptype (Optional) Vector prototype to test against. Should be a size-0 (empty) gener-
alised vector.

size (Optional) Size to check for.

Examples

if (requireNamespace("vctrs") && packageVersion("vctrs") > "0.1.0.9002") {
expect_vector(1:10, ptype = integer(), size = 10)
show_failure(expect_vector(1:10, ptype = integer(), size = 5))
show_failure(expect_vector(1:10, ptype = character(), size = 5))
}

https://vctrs.r-lib.org/articles/type-size.html

26 FailReporter

fail Default expectations that always succeed or fail.

Description

These allow you to manually trigger success or failure. Failure is particularly useful to a pre-
condition or mark a test as not yet implemented.

Usage

fail(
message = "Failure has been forced",
info = NULL,
trace_env = caller_env()

)

succeed(message = "Success has been forced", info = NULL)

Arguments

message a string to display.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

trace_env If is.null(trace), this is used to automatically generate a traceback running
from test_code()/test_file() to trace_env. You’ll generally only need to
set this if you’re wrapping an expectation inside another function.

Examples

Not run:
test_that("this test fails", fail())
test_that("this test succeeds", succeed())

End(Not run)

FailReporter Test reporter: fail at end.

Description

This reporter will simply throw an error if any of the tests failed. It is best combined with another
reporter, such as the SummaryReporter.

inheritance-expectations 27

See Also

Other reporters: CheckReporter, DebugReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

inheritance-expectations

Does code return an object inheriting from the expected base type, S3
class, or S4 class?

Description

See https://adv-r.hadley.nz/oo.html for an overview of R’s OO systems, and the vocabulary
used here.

• expect_type(x, type) checks that typeof(x) is type.
• expect_s3_class(x, class) checks that x is an S3 object that inherits() from class

• expect_s3_class(x, NA) checks that x isn’t an S3 object.
• expect_s4_class(x, class) checks that x is an S4 object that is() class.
• expect_s4_class(x, NA) checks that x isn’t an S4 object.

See expect_vector() for testing properties of objects created by vctrs.

Usage

expect_type(object, type)

expect_s3_class(object, class, exact = FALSE)

expect_s4_class(object, class)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

type String giving base type (as returned by typeof()).
class Either a character vector of class names, or for expect_s3_class() and expect_s4_class(),

an NA to assert that object isn’t an S3 or S4 object.
exact If FALSE, the default, checks that object inherits from class. If TRUE, checks

that object has a class that’s identical to class.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), logical-expectations

https://adv-r.hadley.nz/oo.html

28 is_testing

Examples

x <- data.frame(x = 1:10, y = "x", stringsAsFactors = TRUE)
A data frame is an S3 object with class data.frame
expect_s3_class(x, "data.frame")
show_failure(expect_s4_class(x, "data.frame"))
A data frame is built from a list:
expect_type(x, "list")

An integer vector is an atomic vector of type "integer"
expect_type(x$x, "integer")
It is not an S3 object
show_failure(expect_s3_class(x$x, "integer"))

Above, we requested data.frame() converts strings to factors:
show_failure(expect_type(x$y, "character"))
expect_s3_class(x$y, "factor")
expect_type(x$y, "integer")

is_testing Determine testing status

Description

These functions help you determine if you code is running in a particular testing context:

• is_testing() is TRUE inside a test.

• is_snapshot() is TRUE inside a snapshot test

• is_checking() is TRUE inside of R CMD check (i.e. by test_check()).

• is_parallel() is TRUE if the tests are run in parallel.

• testing_package() gives name of the package being tested.

A common use of these functions is to compute a default value for a quiet argument with is_testing()
&& !is_snapshot(). In this case, you’ll want to avoid an run-time dependency on testthat, in which
case you should just copy the implementation of these functions into a utils.R or similar.

Usage

is_testing()

is_parallel()

is_checking()

is_snapshot()

testing_package()

JunitReporter 29

JunitReporter Test reporter: summary of errors in jUnit XML format.

Description

This reporter includes detailed results about each test and summaries, written to a file (or stdout) in
jUnit XML format. This can be read by the Jenkins Continuous Integration System to report on a
dashboard etc. Requires the xml2 package.

Details

To fit into the jUnit structure, context() becomes the <testsuite> name as well as the base of the
<testcase> classname. The test_that() name becomes the rest of the <testcase> classname.
The deparsed expect_that() call becomes the <testcase> name. On failure, the message goes into
the <failure> node message argument (first line only) and into its text content (full message).

Execution time and some other details are also recorded.

References for the jUnit XML format: http://llg.cubic.org/docs/junit/

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

ListReporter List reporter: gather all test results along with elapsed time and file
information.

Description

This reporter gathers all results, adding additional information such as test elapsed time, and test
filename if available. Very useful for reporting.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

http://llg.cubic.org/docs/junit/

30 local_mocked_bindings

local_mocked_bindings Mocking tools

Description

with_mocked_bindings() and local_mocked_bindings() provide tools for "mocking", tem-
porarily redefining a function so that it behaves differently during tests. This is helpful for testing
functions that depend on external state (i.e. reading a value from a file or a website, or pretending a
package is or isn’t installed).

These functions represent a second attempt at bringing mocking to testthat, incorporating what
we’ve learned from the mockr, mockery, and mockthat packages.

Usage

local_mocked_bindings(..., .package = NULL, .env = caller_env())

with_mocked_bindings(code, ..., .package = NULL)

Arguments

... Name-value pairs providing new values (typically functions) to temporarily re-
place the named bindings.

.package The name of the package where mocked functions should be inserted. Gener-
ally, you should not supply this as it will be automatically detected when whole
package tests are run or when there’s one package under active development
(i.e. loaded with pkgload::load_all()). We don’t recommend using this to
mock functions in other packages, as you should not modify namespaces that
you don’t own.

.env Environment that defines effect scope. For expert use only.

code Code to execute with specified bindings.

Use

There are four places that the function you are trying to mock might come from:

• Internal to your package.

• Imported from an external package via the NAMESPACE.

• The base environment.

• Called from an external package with ::.

They are described in turn below.

Internal & imported functions:
You mock internal and imported functions the same way. For example, take this code:

local_mocked_bindings 31

some_function <- function() {
another_function()

}

It doesn’t matter whether another_function() is defined by your package or you’ve imported it
from a dependency with @import or @importFrom, you mock it the same way:

local_mocked_bindings(
another_function = function(...) "new_value"

)

Base functions:
To mock a function in the base package, you need to make sure that you have a binding for this
function in your package. It’s easiest to do this by binding the value to NULL. For example, if you
wanted to mock interactive() in your package, you’d need to include this code somewhere in
your package:

interactive <- NULL

Why is this necessary? with_mocked_bindings() and local_mocked_bindings() work by
temporarily modifying the bindings within your package’s namespace. When these tests are run-
ning inside of R CMD check the namespace is locked which means it’s not possible to create new
bindings so you need to make sure that the binding exists already.

Namespaced calls:
It’s trickier to mock functions in other packages that you call with ::. For example, take this
minor variation:

some_function <- function() {
anotherpackage::another_function()

}

To mock this function, you’d need to modify another_function() inside the anotherpackage
package. You can do this by supplying the .package argument to local_mocked_bindings()
but we don’t recommend it because it will affect all calls to anotherpackage::another_function(),
not just the calls originating in your package. Instead, it’s safer to either import the function into
your package, or make a wrapper that you can mock:

some_function <- function() {
my_wrapper()

}
my_wrapper <- function(...) {
anotherpackage::another_function(...)

}

local_mocked_bindings(
my_wrapper = function(...) "new_value"

)

32 local_test_context

local_test_context Locally set options for maximal test reproducibility

Description

local_test_context() is run automatically by test_that() but you may want to run it yourself
if you want to replicate test results interactively. If run inside a function, the effects are automatically
reversed when the function exits; if running in the global environment, use withr::deferred_run()
to undo.

local_reproducible_output() is run automatically by test_that() in the 3rd edition. You
might want to call it to override the the default settings inside a test, if you want to test Unicode,
coloured output, or a non-standard width.

Usage

local_test_context(.env = parent.frame())

local_reproducible_output(
width = 80,
crayon = FALSE,
unicode = FALSE,
rstudio = FALSE,
hyperlinks = FALSE,
lang = "en",
.env = parent.frame()

)

Arguments

.env Environment to use for scoping; expert use only.

width Value of the "width" option.

crayon Determines whether or not crayon (now cli) colour should be applied.

unicode Value of the "cli.unicode" option. The test is skipped if l10n_info()$`UTF-8`
is FALSE.

rstudio Should we pretend that we’re inside of RStudio?

hyperlinks Should we use ANSI hyperlinks.

lang Optionally, supply a BCP47 language code to set the language used for trans-
lating error messages. This is a lower case two letter ISO 639 country code,
optionally followed by "_" or "-" and an upper case two letter ISO 3166 region
code.

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

local_test_context 33

Details

local_test_context() sets TESTTHAT = "true", which ensures that is_testing() returns TRUE
and allows code to tell if it is run by testthat.

In the third edition, local_test_context() also calls local_reproducible_output() which
temporary sets the following options:

• cli.dynamic = FALSE so that tests assume that they are not run in a dynamic console (i.e. one
where you can move the cursor around).

• cli.unicode (default: FALSE) so that the cli package never generates unicode output (nor-
mally cli uses unicode on Linux/Mac but not Windows). Windows can’t easily save unicode
output to disk, so it must be set to false for consistency.

• cli.condition_width = Inf so that new lines introduced while width-wrapping condition
messages don’t interfere with message matching.

• crayon.enabled (default: FALSE) suppresses ANSI colours generated by the cli and crayon
packages (normally colours are used if cli detects that you’re in a terminal that supports
colour).

• cli.num_colors (default: 1L) Same as the crayon option.

• lifecycle_verbosity = "warning" so that every lifecycle problem always generates a warn-
ing (otherwise deprecated functions don’t generate a warning every time).

• max.print = 99999 so the same number of values are printed.

• OutDec = "." so numbers always uses . as the decimal point (European users sometimes set
OutDec = ",").

• rlang_interactive = FALSE so that rlang::is_interactive() returns FALSE, and code
that uses it pretends you’re in a non-interactive environment.

• useFancyQuotes = FALSE so base R functions always use regular (straight) quotes (otherwise
the default is locale dependent, see sQuote() for details).

• width (default: 80) to control the width of printed output (usually this varies with the size of
your console).

And modifies the following env vars:

• Unsets RSTUDIO, which ensures that RStudio is never detected as running.

• Sets LANGUAGE = "en", which ensures that no message translation occurs.

Finally, it sets the collation locale to "C", which ensures that character sorting the same regardless
of system locale.

Examples

local({
local_test_context()
cat(cli::col_blue("Text will not be colored"))
cat(cli::symbol$ellipsis)
cat("\n")

})
test_that("test ellipsis", {

34 logical-expectations

local_reproducible_output(unicode = FALSE)
expect_equal(cli::symbol$ellipsis, "...")

local_reproducible_output(unicode = TRUE)
expect_equal(cli::symbol$ellipsis, "\u2026")

})

LocationReporter Test reporter: location

Description

This reporter simply prints the location of every expectation and error. This is useful if you’re
trying to figure out the source of a segfault, or you want to figure out which code triggers a C/C++
breakpoint

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

logical-expectations Does code return TRUE or FALSE?

Description

These are fall-back expectations that you can use when none of the other more specific expectations
apply. The disadvantage is that you may get a less informative error message.

Usage

expect_true(object, info = NULL, label = NULL)

expect_false(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

MinimalReporter 35

Details

Attributes are ignored.

See Also

is_false() for complement

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations

Examples

expect_true(2 == 2)
Failed expectations will throw an error
Not run:
expect_true(2 != 2)

End(Not run)
expect_true(!(2 != 2))
or better:
expect_false(2 != 2)

a <- 1:3
expect_true(length(a) == 3)
but better to use more specific expectation, if available
expect_equal(length(a), 3)

MinimalReporter Test reporter: minimal.

Description

The minimal test reporter provides the absolutely minimum amount of information: whether each
expectation has succeeded, failed or experienced an error. If you want to find out what the failures
and errors actually were, you’ll need to run a more informative test reporter.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

36 RStudioReporter

MultiReporter Multi reporter: combine several reporters in one.

Description

This reporter is useful to use several reporters at the same time, e.g. adding a custom reporter
without removing the current one.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

ProgressReporter Test reporter: interactive progress bar of errors.

Description

ProgressReporter is designed for interactive use. Its goal is to give you actionable insights to help
you understand the status of your code. This reporter also praises you from time-to-time if all your
tests pass. It’s the default reporter for test_dir().

ParallelProgressReporter is very similar to ProgressReporter, but works better for packages
that want parallel tests.

CompactProgressReporter is a minimal version of ProgressReporter designed for use with
single files. It’s the default reporter for test_file().

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

RStudioReporter Test reporter: RStudio

Description

This reporter is designed for output to RStudio. It produces results in any easily parsed form.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

set_state_inspector 37

set_state_inspector State inspected

Description

One of the most pernicious challenges to debug is when a test runs fine in your test suite, but fails
when you run it interactively (or similarly, it fails randomly when running your tests in parallel).
One of the most common causes of this problem is accidentally changing global state in a previous
test (e.g. changing an option, an environment variable, or the working directory). This is hard to
debug, because it’s very hard to figure out which test made the change.

Luckily testthat provides a tool to figure out if tests are changing global state. You can regis-
ter a state inspector with set_state_inspector() and testthat will run it before and after each
test, store the results, then report if there are any differences. For example, if you wanted to see
if any of your tests were changing options or environment variables, you could put this code in
tests/testthat/helper-state.R:

set_state_inspector(function() {
list(
options = options(),
envvars = Sys.getenv()

)
})

(You might discover other packages outside your control are changing the global state, in which
case you might want to modify this function to ignore those values.)

Other problems that can be troublesome to resolve are CRAN check notes that report things like
connections being left open. You can easily debug that problem with:

set_state_inspector(function() {
getAllConnections()

})

Usage

set_state_inspector(callback)

Arguments

callback Either a zero-argument function that returns an object capturing global state that
you’re interested in, or NULL.

38 skip

SilentReporter Test reporter: gather all errors silently.

Description

This reporter quietly runs all tests, simply gathering all expectations. This is helpful for program-
matically inspecting errors after a test run. You can retrieve the results with the expectations()
method.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

skip Skip a test

Description

skip_if() and skip_if_not() allow you to skip tests, immediately concluding a test_that()
block without executing any further expectations. This allows you to skip a test without failure, if
for some reason it can’t be run (e.g. it depends on the feature of a specific operating system, or it
requires a specific version of a package).

See vignette("skipping") for more details.

Usage

skip(message = "Skipping")

skip_if_not(condition, message = NULL)

skip_if(condition, message = NULL)

skip_if_not_installed(pkg, minimum_version = NULL)

skip_if_offline(host = "captive.apple.com")

skip_on_cran()

skip_on_os(os, arch = NULL)

skip_on_ci()

skip_on_covr()

skip 39

skip_on_bioc()

skip_if_translated(msgid = "'%s' not found")

Arguments

message A message describing why the test was skipped.

condition Boolean condition to check. skip_if_not() will skip if FALSE, skip_if() will
skip if TRUE.

pkg Name of package to check for
minimum_version

Minimum required version for the package

host A string with a hostname to lookup

os Character vector of one or more operating systems to skip on. Supported values
are "windows", "mac", "linux", and "solaris".

arch Character vector of one or more architectures to skip on. Common values in-
clude "i386" (32 bit), "x86_64" (64 bit), and "aarch64" (M1 mac). Supplying
arch makes the test stricter; i.e. both os and arch must match in order for the
test to be skipped.

msgid R message identifier used to check for translation: the default uses a message
included in most translation packs. See the complete list in R-base.pot.

Helpers

• skip_if_not_installed("pkg") skips tests if package "pkg" is not installed or cannot be
loaded (using requireNamespace()). Generally, you can assume that suggested packages
are installed, and you do not need to check for them specifically, unless they are particularly
difficult to install.

• skip_if_offline() skips if an internet connection is not available (using curl::nslookup())
or if the test is run on CRAN. Requires the curl packages to be installed.

• skip_if_translated("msg") skips tests if the "msg" is translated.

• skip_on_bioc() skips on Bioconductor (using the IS_BIOC_BUILD_MACHINE env var).

• skip_on_cran() skips on CRAN (using the NOT_CRAN env var set by devtools and friends).

• skip_on_covr() skips when covr is running (using the R_COVR env var).

• skip_on_ci() skips on continuous integration systems like GitHub Actions, travis, and ap-
pveyor (using the CI env var).

• skip_on_os() skips on the specified operating system(s) ("windows", "mac", "linux", or "so-
laris").

Examples

if (FALSE) skip("Some Important Requirement is not available")

test_that("skip example", {

https://github.com/wch/r-source/blob/master/src/library/base/po/R-base.pot

40 StopReporter

expect_equal(1, 1L) # this expectation runs
skip('skip')
expect_equal(1, 2) # this one skipped
expect_equal(1, 3) # this one is also skipped

})

snapshot_accept Snapshot management

Description

• snapshot_accept() accepts all modified snapshots.
• snapshot_review() opens a Shiny app that shows a visual diff of each modified snapshot.

This is particularly useful for whole file snapshots created by expect_snapshot_file().

Usage

snapshot_accept(files = NULL, path = "tests/testthat")

snapshot_review(files = NULL, path = "tests/testthat")

Arguments

files Optionally, filter effects to snapshots from specified files. This can be a snapshot
name (e.g. foo or foo.md), a snapshot file name (e.g. testfile/foo.txt), or
a snapshot file directory (e.g. testfile/).

path Path to tests.

StopReporter Test reporter: stop on error

Description

The default reporter used when expect_that() is run interactively. It responds by stop()ping on
failures and doing nothing otherwise. This will ensure that a failing test will raise an error.

Details

This should be used when doing a quick and dirty test, or during the final automated testing of R
CMD check. Otherwise, use a reporter that runs all tests and gives you more context about the
problem.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SummaryReporter, TapReporter, TeamcityReporter

SummaryReporter 41

SummaryReporter Test reporter: summary of errors.

Description

This is a reporter designed for interactive usage: it lets you know which tests have run successfully
and as well as fully reporting information about failures and errors.

Details

You can use the max_reports field to control the maximum number of detailed reports produced
by this reporter. This is useful when running with auto_test()

As an additional benefit, this reporter will praise you from time-to-time if all your tests pass.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, TapReporter, TeamcityReporter

TapReporter Test reporter: TAP format.

Description

This reporter will output results in the Test Anything Protocol (TAP), a simple text-based interface
between testing modules in a test harness. For more information about TAP, see http://testanything.org

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TeamcityReporter

42 test_file

TeamcityReporter Test reporter: Teamcity format.

Description

This reporter will output results in the Teamcity message format. For more information about Team-
city messages, see http://confluence.jetbrains.com/display/TCD7/Build+Script+Interaction+with+TeamCity

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TapReporter

teardown_env Run code after all test files

Description

This environment has no purpose other than as a handle for withr::defer(): use it when you
want to run code after all tests have been run. Typically, you’ll use withr::defer(cleanup(),
teardown_env()) immediately after you’ve made a mess in a setup-*.R file.

Usage

teardown_env()

test_file Run tests in a single file

Description

Helper, setup, and teardown files located in the same directory as the test will also be run. See
vignette("special-files") for details.

Usage

test_file(
path,
reporter = default_compact_reporter(),
desc = NULL,
package = NULL,
...

)

test_package 43

Arguments

path Path to file.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

desc Optionally, supply a string here to run only a single test (test_that() or describe())
with this description.

package If these tests belong to a package, the name of the package.

... Additional parameters passed on to test_dir()

Value

A list (invisibly) containing data about the test results.

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests, that
environment inherits from the package’s namespace environment, so that tests can access internal
functions and objects.

Examples

path <- testthat_example("success")
test_file(path)
test_file(path, desc = "some tests have warnings")
test_file(path, reporter = "minimal")

test_package Run all tests in a package

Description

• test_local() tests a local source package.

• test_package() tests an installed package.

• test_check() checks a package during R CMD check.

See vignette("special-files") to learn about the various files that testthat works with.

Usage

test_package(package, reporter = check_reporter(), ...)

test_check(package, reporter = check_reporter(), ...)

test_local(path = ".", reporter = NULL, ..., load_package = "source")

44 test_path

Arguments

package If these tests belong to a package, the name of the package.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

... Additional arguments passed to test_dir()

path Path to directory containing tests.

load_package Strategy to use for load package code:

• "none", the default, doesn’t load the package.
• "installed", uses library() to load an installed package.
• "source", uses pkgload::load_all() to a source package. To configure

the arguments passed to load_all(), add this field in your DESCRIPTION
file:
Config/testthat/load-all: list(export_all = FALSE, helpers = FALSE)

Value

A list (invisibly) containing data about the test results.

R CMD check

To run testthat automatically from R CMD check, make sure you have a tests/testthat.R that
contains:

library(testthat)
library(yourpackage)

test_check("yourpackage")

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests, that
environment inherits from the package’s namespace environment, so that tests can access internal
functions and objects.

test_path Locate a file in the testing directory

Description

Many tests require some external file (e.g. a .csv if you’re testing a data import function) but
the working directory varies depending on the way that you’re running the test (e.g. interactively,
with devtools::test(), or with R CMD check). test_path() understands these variations and
automatically generates a path relative to tests/testthat, regardless of where that directory might
reside relative to the current working directory.

test_that 45

Usage

test_path(...)

Arguments

... Character vectors giving path components.

Value

A character vector giving the path.

Examples

Not run:
test_path("foo.csv")
test_path("data", "foo.csv")

End(Not run)

test_that Run a test

Description

A test encapsulates a series of expectations about a small, self-contained unit of functionality. Each
test contains one or more expectations, such as expect_equal() or expect_error(), and lives in
a test/testhat/test* file, often together with other tests that relate to the same function or set of
functions.

Each test has its own execution environment, so an object created in a test also dies with the test.
Note that this cleanup does not happen automatically for other aspects of global state, such as
session options or filesystem changes. Avoid changing global state, when possible, and reverse any
changes that you do make.

Usage

test_that(desc, code)

Arguments

desc Test name. Names should be brief, but evocative. It’s common to write the de-
scription so that it reads like a natural sentence, e.g. test_that("multiplication
works", { ... }).

code Test code containing expectations. Braces ({}) should always be used in order
to get accurate location data for test failures.

Value

When run interactively, returns invisible(TRUE) if all tests pass, otherwise throws an error.

46 use_catch

Examples

test_that("trigonometric functions match identities", {
expect_equal(sin(pi / 4), 1 / sqrt(2))
expect_equal(cos(pi / 4), 1 / sqrt(2))
expect_equal(tan(pi / 4), 1)

})

Not run:
test_that("trigonometric functions match identities", {

expect_equal(sin(pi / 4), 1)
})

End(Not run)

use_catch Use Catch for C++ Unit Testing

Description

Add the necessary infrastructure to enable C++ unit testing in R packages with Catch and testthat.

Usage

use_catch(dir = getwd())

Arguments

dir The directory containing an R package.

Details

Calling use_catch() will:

1. Create a file src/test-runner.cpp, which ensures that the testthat package will under-
stand how to run your package’s unit tests,

2. Create an example test file src/test-example.cpp, which showcases how you might use
Catch to write a unit test,

3. Add a test file tests/testthat/test-cpp.R, which ensures that testthat will run your
compiled tests during invocations of devtools::test() or R CMD check, and

4. Create a file R/catch-routine-registration.R, which ensures that R will automatically
register this routine when tools::package_native_routine_registration_skeleton()
is invoked.

You will also need to:

• Add xml2 to Suggests, with e.g. usethis::use_package("xml2", "Suggests")

• Add testthat to LinkingTo, with e.g. usethis::use_package("testthat", "LinkingTo")

https://github.com/catchorg/Catch2

use_catch 47

C++ unit tests can be added to C++ source files within the src directory of your package, with a
format similar to R code tested with testthat. Here’s a simple example of a unit test written with
testthat + Catch:

context("C++ Unit Test") {
test_that("two plus two is four") {
int result = 2 + 2;
expect_true(result == 4);

}
}

When your package is compiled, unit tests alongside a harness for running these tests will be com-
piled into your R package, with the C entry point run_testthat_tests(). testthat will use that
entry point to run your unit tests when detected.

Functions

All of the functions provided by Catch are available with the CATCH_ prefix – see here for a full list.
testthat provides the following wrappers, to conform with testthat’s R interface:

Function Catch Description
context CATCH_TEST_CASE The context of a set of tests.
test_that CATCH_SECTION A test section.
expect_true CATCH_CHECK Test that an expression evaluates to true.
expect_false CATCH_CHECK_FALSE Test that an expression evalutes to false.
expect_error CATCH_CHECK_THROWS Test that evaluation of an expression throws an exception.
expect_error_as CATCH_CHECK_THROWS_AS Test that evaluation of an expression throws an exception of a specific class.

In general, you should prefer using the testthat wrappers, as testthat also does some work to
ensure that any unit tests within will not be compiled or run when using the Solaris Studio compilers
(as these are currently unsupported by Catch). This should make it easier to submit packages to
CRAN that use Catch.

Symbol Registration

If you’ve opted to disable dynamic symbol lookup in your package, then you’ll need to explicitly
export a symbol in your package that testthat can use to run your unit tests. testthat will look
for a routine with one of the names:

C_run_testthat_tests
c_run_testthat_tests
run_testthat_tests

See Controlling Visibility and Registering Symbols in the Writing R Extensions manual for more
information.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Controlling-visibility
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-symbols

48 use_catch

Advanced Usage

If you’d like to write your own Catch test runner, you can instead use the testthat::catchSession()
object in a file with the form:

#define TESTTHAT_TEST_RUNNER
#include <testthat.h>

void run()
{

Catch::Session& session = testthat::catchSession();
// interact with the session object as desired

}

This can be useful if you’d like to run your unit tests with custom arguments passed to the Catch
session.

Standalone Usage

If you’d like to use the C++ unit testing facilities provided by Catch, but would prefer not to use the
regular testthat R testing infrastructure, you can manually run the unit tests by inserting a call to:

.Call("run_testthat_tests", PACKAGE = <pkgName>)

as necessary within your unit test suite.

See Also

Catch, the library used to enable C++ unit testing.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md

Index

∗ debugging
auto_test, 3
auto_test_package, 4

∗ expectations
comparison-expectations, 5
equality-expectations, 7
expect_error, 10
expect_length, 14
expect_named, 15
expect_output, 17
expect_silent, 19
inheritance-expectations, 27
logical-expectations, 34

∗ reporters
CheckReporter, 4
DebugReporter, 6
FailReporter, 26
JunitReporter, 29
ListReporter, 29
LocationReporter, 34
MinimalReporter, 35
MultiReporter, 36
ProgressReporter, 36
RStudioReporter, 36
SilentReporter, 38
StopReporter, 40
SummaryReporter, 41
TapReporter, 41
TeamcityReporter, 42

all.equal(), 7, 8
announce_snapshot_file

(expect_snapshot_file), 22
auto_test, 3
auto_test(), 4, 41
auto_test_package, 4
auto_test_package(), 3

base::all.equal(), 25
base::signalCondition(), 10

base::stop(), 10

CheckReporter, 4, 6, 27, 29, 34–36, 38, 40–42
CompactProgressReporter

(ProgressReporter), 36
compare(), 8
compare_file_binary

(expect_snapshot_file), 22
compare_file_text

(expect_snapshot_file), 22
comparison-expectations, 5
curl::nslookup(), 39

DebugReporter, 4, 6, 27, 29, 34–36, 38, 40–42
deparse(), 24
describe, 6

equality-expectations, 7
exp_signal(), 10
expect, 9
expect_condition (expect_error), 10
expect_contains (expect_setequal), 18
expect_equal (equality-expectations), 7
expect_equal(), 45
expect_error, 5, 8, 10, 14, 15, 18, 20, 27, 35
expect_error(), 16, 45
expect_false (logical-expectations), 34
expect_gt (comparison-expectations), 5
expect_gte (comparison-expectations), 5
expect_identical

(equality-expectations), 7
expect_in (expect_setequal), 18
expect_invisible, 13
expect_length, 5, 8, 12, 14, 15, 18, 20, 27, 35
expect_lt (comparison-expectations), 5
expect_lte (comparison-expectations), 5
expect_mapequal (expect_setequal), 18
expect_mapequal(), 8
expect_match, 5, 8, 12, 14, 15, 18, 20, 27, 35
expect_message (expect_error), 10

49

50 INDEX

expect_named, 5, 8, 12, 14, 15, 18, 20, 27, 35
expect_no_condition (expect_no_error),

16
expect_no_error, 16
expect_no_error(), 11, 12
expect_no_message (expect_no_error), 16
expect_no_warning (expect_no_error), 16
expect_null, 5, 8, 12, 14, 15, 18, 20, 27, 35
expect_output, 5, 8, 12, 14, 15, 17, 20, 27, 35
expect_reference, 5, 8, 12, 14, 15, 18, 20,

27, 35
expect_reference(), 8
expect_s3_class

(inheritance-expectations), 27
expect_s4_class

(inheritance-expectations), 27
expect_setequal, 18
expect_setequal(), 8
expect_silent, 5, 8, 12, 14, 15, 18, 19, 27, 35
expect_snapshot, 20
expect_snapshot(), 10, 12, 17, 24
expect_snapshot_file, 22
expect_snapshot_value, 24
expect_snapshot_value(), 20
expect_that(), 40
expect_true (logical-expectations), 34
expect_type (inheritance-expectations),

27
expect_vector, 25
expect_vector(), 14, 27
expect_visible (expect_invisible), 13
expect_warning (expect_error), 10

fail, 26
FailReporter, 4, 6, 26, 29, 34–36, 38, 40–42

identical(), 7, 8
inheritance-expectations, 27
inherits(), 27
is(), 27
is_checking (is_testing), 28
is_false(), 35
is_parallel (is_testing), 28
is_snapshot (is_testing), 28
is_testing, 28
is_testing(), 33
it (describe), 6

jsonlite::fromJSON(), 24

jsonlite::serializeJSON(), 24
jsonlite::toJSON(), 24
jsonlite::unserializeJSON(), 24
JunitReporter, 4, 6, 27, 29, 29, 34–36, 38,

40–42

library(), 44
ListReporter, 4, 6, 27, 29, 29, 34–36, 38,

40–42
local_mocked_bindings, 30
local_reproducible_output

(local_test_context), 32
local_test_context, 32
LocationReporter, 4, 6, 27, 29, 34, 35, 36,

38, 40–42
logical-expectations, 34

MinimalReporter, 4, 6, 27, 29, 34, 35, 36, 38,
40–42

MultiReporter, 4, 6, 27, 29, 34–36, 36, 38,
40–42

new_expectation(), 10

ParallelProgressReporter
(ProgressReporter), 36

pkgload::load_all(), 30, 44
ProgressReporter, 4, 6, 27, 29, 34–36, 36,

38, 40–42

quasi_label, 8, 11, 12, 14–19, 25, 27, 34

recover(), 6
Reporter, 4, 6, 27, 29, 34–36, 38, 40–44
rlang::is_interactive(), 33
rlang::trace_back(), 9
RStudioReporter, 4, 6, 27, 29, 34–36, 36, 38,

40–42

serialize(), 24
set_state_inspector, 37
SilentReporter, 4, 6, 27, 29, 34–36, 38,

40–42
skip, 38
skip(), 23
skip_if (skip), 38
skip_if_not (skip), 38
skip_if_not_installed (skip), 38
skip_if_offline (skip), 38
skip_if_translated (skip), 38

INDEX 51

skip_on_bioc (skip), 38
skip_on_ci (skip), 38
skip_on_covr (skip), 38
skip_on_cran (skip), 38
skip_on_os (skip), 38
snapshot_accept, 40
snapshot_accept(), 21
snapshot_review (snapshot_accept), 40
snapshot_review(), 22
sQuote(), 33
stop(), 40
StopReporter, 4, 6, 27, 29, 34–36, 38, 40, 41,

42
succeed (fail), 26
SummaryReporter, 4, 6, 26, 27, 29, 34–36, 38,

40, 41, 41, 42
suppressMessages(), 10
suppressWarnings(), 10

TapReporter, 4, 6, 27, 29, 34–36, 38, 40, 41,
41, 42

TeamcityReporter, 4, 6, 27, 29, 34–36, 38,
40, 41, 42

teardown_env, 42
test_check (test_package), 43
test_check(), 28
test_dir(), 21, 36, 44
test_file, 42
test_file(), 21, 36
test_local (test_package), 43
test_package, 43
test_path, 44
test_that, 45
test_that(), 6, 38
testing_package (is_testing), 28
typeof(), 27

use_catch, 46

vctrs::vec_assert(), 25

waldo::compare(), 8, 25
watch(), 3, 4
with_mocked_bindings

(local_mocked_bindings), 30
withr::defer(), 42
withr::deferred_run(), 32

	auto_test
	auto_test_package
	CheckReporter
	comparison-expectations
	DebugReporter
	describe
	equality-expectations
	expect
	expect_error
	expect_invisible
	expect_length
	expect_named
	expect_no_error
	expect_output
	expect_setequal
	expect_silent
	expect_snapshot
	expect_snapshot_file
	expect_snapshot_value
	expect_vector
	fail
	FailReporter
	inheritance-expectations
	is_testing
	JunitReporter
	ListReporter
	local_mocked_bindings
	local_test_context
	LocationReporter
	logical-expectations
	MinimalReporter
	MultiReporter
	ProgressReporter
	RStudioReporter
	set_state_inspector
	SilentReporter
	skip
	snapshot_accept
	StopReporter
	SummaryReporter
	TapReporter
	TeamcityReporter
	teardown_env
	test_file
	test_package
	test_path
	test_that
	use_catch
	Index

