Title: | A S3 Class for Vectors of 64bit Integers |
---|---|
Description: | Package 'bit64' provides serializable S3 atomic 64bit (signed) integers. These are useful for handling database keys and exact counting in +-2^63. WARNING: do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double, e.g. integer64 + double => integer64. Class integer64 can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as 'match' and 'order' support inter- active data exploration and manipulation and optionally leverage caching. |
Authors: | Michael Chirico [aut, cre], Jens Oehlschlägel [aut], Leonardo Silvestri [ctb], Ofek Shilon [ctb] |
Maintainer: | Michael Chirico <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 4.5.99 |
Built: | 2024-10-24 16:16:33 UTC |
Source: | https://github.com/r-lib/bit64 |
A utility to compare integer64 objects 'x' and 'y' testing for
‘near equality’, see all.equal()
.
## S3 method for class 'integer64' all.equal( target, current, tolerance = sqrt(.Machine$double.eps), scale = NULL, countEQ = FALSE, formatFUN = function(err, what) format(err), ..., check.attributes = TRUE )
## S3 method for class 'integer64' all.equal( target, current, tolerance = sqrt(.Machine$double.eps), scale = NULL, countEQ = FALSE, formatFUN = function(err, what) format(err), ..., check.attributes = TRUE )
target |
a vector of 'integer64' or an object that can be coerced
with |
current |
a vector of 'integer64' or an object that can be coerced
with |
tolerance |
numeric > 0. Differences smaller than |
scale |
|
countEQ |
logical indicating if the |
formatFUN |
a |
... |
further arguments are ignored |
check.attributes |
logical indicating if the |
In all.equal.numeric()
the type integer
is treated as a proper subset
of double
i.e. does not complain about comparing integer
with double
.
Following this logic all.equal.integer64
treats integer
as a proper
subset of integer64
and does not complain about comparing integer
with
integer64
. double
also compares without warning as long as the values
are within lim.integer64()
, if double
are bigger all.equal.integer64
complains about the all.equal.integer64 overflow warning
. For further
details see all.equal()
.
Either ‘TRUE’ (‘NULL’ for ‘attr.all.equal’) or a vector of ‘mode’ ‘"character"’ describing the differences between ‘target’ and ‘current’.
all.equal()
only dispatches to this method if the first argument is integer64
,
calling all.equal()
with a non-integer64
first and a integer64
second argument
gives undefined behavior!
all.equal(as.integer64(1:10), as.integer64(0:9)) all.equal(as.integer64(1:10), as.integer(1:10)) all.equal(as.integer64(1:10), as.double(1:10)) all.equal(as.integer64(1), as.double(1e300))
all.equal(as.integer64(1:10), as.integer64(0:9)) all.equal(as.integer64(1:10), as.integer(1:10)) all.equal(as.integer64(1:10), as.double(1:10)) all.equal(as.integer64(1), as.double(1e300))
Methods to coerce integer64 to other atomic types. 'as.bitstring' coerces
to a human-readable bit representation (strings of zeroes and ones).
The methods format()
, as.character()
, as.double()
,
as.logical()
, as.integer()
do what you would expect.
as.bitstring(x, ...) ## S3 method for class 'integer64' as.double(x, keep.names = FALSE, ...) ## S3 method for class 'integer64' as.integer(x, ...) ## S3 method for class 'integer64' as.logical(x, ...) ## S3 method for class 'integer64' as.character(x, ...) ## S3 method for class 'integer64' as.bitstring(x, ...) ## S3 method for class 'bitstring' print(x, ...) ## S3 method for class 'integer64' as.list(x, ...)
as.bitstring(x, ...) ## S3 method for class 'integer64' as.double(x, keep.names = FALSE, ...) ## S3 method for class 'integer64' as.integer(x, ...) ## S3 method for class 'integer64' as.logical(x, ...) ## S3 method for class 'integer64' as.character(x, ...) ## S3 method for class 'integer64' as.bitstring(x, ...) ## S3 method for class 'bitstring' print(x, ...) ## S3 method for class 'integer64' as.list(x, ...)
x |
an integer64 vector |
... |
further arguments to the |
keep.names |
FALSE, set to TRUE to keep a names vector |
as.bitstring
returns a string of class 'bitstring'.
The other methods return atomic vectors of the expected types
as.integer64.character()
integer64()
as.character(lim.integer64()) as.bitstring(lim.integer64()) as.bitstring(as.integer64(c( -2,-1,NA,0:2 )))
as.character(lim.integer64()) as.bitstring(lim.integer64()) as.bitstring(as.integer64(c( -2,-1,NA,0:2 )))
Coercing integer64 vector to data.frame.
## S3 method for class 'integer64' as.data.frame(x, ...)
## S3 method for class 'integer64' as.data.frame(x, ...)
x |
an integer64 vector |
... |
passed to NextMethod |
'as.data.frame.integer64' is rather not intended to be called directly, but it is required to allow integer64 as data.frame columns.
a one-column data.frame containing an integer64 vector
This is currently very slow – any ideas for improvement?
as.data.frame.integer64(as.integer64(1:12)) data.frame(a=1:12, b=as.integer64(1:12))
as.data.frame.integer64(as.integer64(1:12)) data.frame(a=1:12, b=as.integer64(1:12))
Methods to coerce from other atomic types to integer64.
as.integer64(x, ...) ## S3 method for class ''NULL'' as.integer64(x, ...) ## S3 method for class 'integer64' as.integer64(x, ...) ## S3 method for class 'double' as.integer64(x, keep.names = FALSE, ...) ## S3 method for class 'integer' as.integer64(x, ...) ## S3 method for class 'logical' as.integer64(x, ...) ## S3 method for class 'character' as.integer64(x, ...) ## S3 method for class 'factor' as.integer64(x, ...) ## S3 method for class 'bitstring' as.integer64(x, ...) NA_integer64_
as.integer64(x, ...) ## S3 method for class ''NULL'' as.integer64(x, ...) ## S3 method for class 'integer64' as.integer64(x, ...) ## S3 method for class 'double' as.integer64(x, keep.names = FALSE, ...) ## S3 method for class 'integer' as.integer64(x, ...) ## S3 method for class 'logical' as.integer64(x, ...) ## S3 method for class 'character' as.integer64(x, ...) ## S3 method for class 'factor' as.integer64(x, ...) ## S3 method for class 'bitstring' as.integer64(x, ...) NA_integer64_
x |
an atomic vector |
... |
further arguments to the |
keep.names |
FALSE, set to TRUE to keep a names vector |
An object of class integer64
of length 1.
as.integer64.character
is realized using C function strtoll
which
does not support scientific notation. Instead of '1e6' use '1000000'.
as.integer64.bitstring
evaluates characters '0' and ' ' as zero-bit,
all other one byte characters as one-bit, multi-byte characters are not allowed,
strings shorter than 64 characters are treated as if they were left-padded with '0',
strings longer than 64 bytes are mapped to NA_INTEGER64
and a warning is emitted.
The other methods return atomic vectors of the expected types
as.character.integer64()
integer64()
as.integer64(as.character(lim.integer64())) as.integer64( structure(c("1111111111111111111111111111111111111111111111111111111111111110", "1111111111111111111111111111111111111111111111111111111111111111", "1000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000001", "0000000000000000000000000000000000000000000000000000000000000010" ), class = "bitstring") ) as.integer64( structure(c("............................................................... ", "................................................................", ". ", "", ".", "10" ), class = "bitstring") )
as.integer64(as.character(lim.integer64())) as.integer64( structure(c("1111111111111111111111111111111111111111111111111111111111111110", "1111111111111111111111111111111111111111111111111111111111111111", "1000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000001", "0000000000000000000000000000000000000000000000000000000000000010" ), class = "bitstring") ) as.integer64( structure(c("............................................................... ", "................................................................", ". ", "", ".", "10" ), class = "bitstring") )
Function for measuring algorithmic performance of high-level and low-level integer64 functions
benchmark64(nsmall = 2L^16L, nbig = 2L^25L, timefun = repeat.time) optimizer64( nsmall = 2L^16L, nbig = 2L^25L, timefun = repeat.time, what = c("match", "%in%", "duplicated", "unique", "unipos", "table", "rank", "quantile"), uniorder = c("original", "values", "any"), taborder = c("values", "counts"), plot = TRUE )
benchmark64(nsmall = 2L^16L, nbig = 2L^25L, timefun = repeat.time) optimizer64( nsmall = 2L^16L, nbig = 2L^25L, timefun = repeat.time, what = c("match", "%in%", "duplicated", "unique", "unipos", "table", "rank", "quantile"), uniorder = c("original", "values", "any"), taborder = c("values", "counts"), plot = TRUE )
nsmall |
size of smaller vector |
nbig |
size of larger bigger vector |
timefun |
a function for timing such as |
what |
a vector of names of high-level functions |
uniorder |
one of the order parameters that are allowed in |
taborder |
one of the order parameters that are allowed in |
plot |
set to FALSE to suppress plotting |
benchmark64
compares the following scenarios for the following use cases:
scenario name | explanation |
32-bit | applying Base R function to 32-bit integer data |
64-bit | applying bit64 function to 64-bit integer data (with no cache) |
hashcache | ditto when cache contains hashmap() , see hashcache() |
sortordercache | ditto when cache contains sorting and ordering, see sortordercache() |
ordercache | ditto when cache contains ordering only, see ordercache() |
allcache | ditto when cache contains sorting, ordering and hashing |
use case name | explanation |
cache | filling the cache according to scenario |
match(s,b) | match small in big vector |
s %in% b | small %in% big vector |
match(b,s) | match big in small vector |
b %in% s | big %in% small vector |
match(b,b) | match big in (different) big vector |
b %in% b | big %in% (different) big vector |
duplicated(b) | duplicated of big vector |
unique(b) | unique of big vector |
table(b) | table of big vector |
sort(b) | sorting of big vector |
order(b) | ordering of big vector |
rank(b) | ranking of big vector |
quantile(b) | quantiles of big vector |
summary(b) | summary of of big vector |
SESSION | exemplary session involving multiple calls (including cache filling costs) |
Note that the timings for the cached variants do not contain the time costs of building the cache, except for the timing of the exemplary user session, where the cache costs are included in order to evaluate amortization.
benchmark64
returns a matrix with elapsed seconds, different high-level tasks
in rows and different scenarios to solve the task in columns. The last row
named 'SESSION' contains the elapsed seconds of the exemplary sesssion.
optimizer64
returns a dimensioned list with one row for each high-level
function timed and two columns named after the values of the nsmall
and
nbig
sample sizes. Each list cell contains a matrix with timings,
low-level-methods in rows and three measurements c("prep","both","use")
in columns. If it can be measured separately, prep
contains the timing
of preparatory work such as sorting and hashing, and use
contains the
timing of using the prepared work. If the function timed does both,
preparation and use, the timing is in both
.
benchmark64()
: compares high-level integer64 functions against the
integer functions from Base R
optimizer64()
: compares for each high-level integer64 function the Base
R integer function with several low-level integer64 functions with and
without caching
message("this small example using system.time does not give serious timings\n this we do this only to run regression tests") benchmark64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE)) optimizer64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE) , plot=FALSE ) ## Not run: message("for real measurement of sufficiently large datasets run this on your machine") benchmark64() optimizer64() ## End(Not run) message("let's look at the performance results on Core i7 Lenovo T410 with 8 GB RAM") data(benchmark64.data) print(benchmark64.data) matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]) , pch=c("3", "6", "h", "s", "o", "a") , xlab="tasks [last=session]" , ylab="log2(relative speed) [bigger is better]" ) matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])) , type="b", axes=FALSE , lwd=c(rep(1, 14), 3) , xlab="context" , ylab="log2(relative speed) [bigger is better]" ) axis(1 , labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder") , at=1:6 ) axis(2) data(optimizer64.data) print(optimizer64.data) oldpar <- par(no.readonly = TRUE) par(mfrow=c(2,1)) par(cex=0.7) for (i in 1:nrow(optimizer64.data)){ for (j in 1:2){ tim <- optimizer64.data[[i,j]] barplot(t(tim)) if (rownames(optimizer64.data)[i]=="match") title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j])) else if (rownames(optimizer64.data)[i]=="%in%") title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j])) else title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j])) } } par(mfrow=c(1,1))
message("this small example using system.time does not give serious timings\n this we do this only to run regression tests") benchmark64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE)) optimizer64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE) , plot=FALSE ) ## Not run: message("for real measurement of sufficiently large datasets run this on your machine") benchmark64() optimizer64() ## End(Not run) message("let's look at the performance results on Core i7 Lenovo T410 with 8 GB RAM") data(benchmark64.data) print(benchmark64.data) matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]) , pch=c("3", "6", "h", "s", "o", "a") , xlab="tasks [last=session]" , ylab="log2(relative speed) [bigger is better]" ) matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])) , type="b", axes=FALSE , lwd=c(rep(1, 14), 3) , xlab="context" , ylab="log2(relative speed) [bigger is better]" ) axis(1 , labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder") , at=1:6 ) axis(2) data(optimizer64.data) print(optimizer64.data) oldpar <- par(no.readonly = TRUE) par(mfrow=c(2,1)) par(cex=0.7) for (i in 1:nrow(optimizer64.data)){ for (j in 1:2){ tim <- optimizer64.data[[i,j]] barplot(t(tim)) if (rownames(optimizer64.data)[i]=="match") title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j])) else if (rownames(optimizer64.data)[i]=="%in%") title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j])) else title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j])) } } par(mfrow=c(1,1))
These are the results of calling benchmark64()
data(benchmark64.data)
data(benchmark64.data)
The format is:
num [1:16, 1:6] 2.55e-05 2.37 2.39 1.28 1.39 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:16] "cache" "match(s,b)" "s %in% b" "match(b,s)" ... ..$ : chr [1:6] "32-bit" "64-bit" "hashcache" "sortordercache" ...
data(benchmark64.data) print(benchmark64.data) matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]) , pch=c("3", "6", "h", "s", "o", "a") , xlab="tasks [last=session]" , ylab="log2(relative speed) [bigger is better]" ) matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])) , axes=FALSE , type="b" , lwd=c(rep(1, 14), 3) , xlab="context" , ylab="log2(relative speed) [bigger is better]" ) axis(1 , labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder") , at=1:6 ) axis(2)
data(benchmark64.data) print(benchmark64.data) matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]) , pch=c("3", "6", "h", "s", "o", "a") , xlab="tasks [last=session]" , ylab="log2(relative speed) [bigger is better]" ) matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])) , axes=FALSE , type="b" , lwd=c(rep(1, 14), 3) , xlab="context" , ylab="log2(relative speed) [bigger is better]" ) axis(1 , labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder") , at=1:6 ) axis(2)
Turn those base functions S3 generic which are used in bit64
from:to is.double(x) match(x, table, ...) x %in% table rank(x, ...) order(...) ## Default S3 method: is.double(x) ## S3 method for class 'integer64' is.double(x) ## S3 method for class 'integer64' mtfrm(x) ## Default S3 method: match(x, table, ...) ## Default S3 method: x %in% table ## Default S3 method: rank(x, ...) ## Default S3 method: order(...)
from:to is.double(x) match(x, table, ...) x %in% table rank(x, ...) order(...) ## Default S3 method: is.double(x) ## S3 method for class 'integer64' is.double(x) ## S3 method for class 'integer64' mtfrm(x) ## Default S3 method: match(x, table, ...) ## Default S3 method: x %in% table ## Default S3 method: rank(x, ...) ## Default S3 method: order(...)
x |
integer64 vector: the values to be matched, optionally carrying a
cache created with |
table |
integer64 vector: the values to be matched against, optionally
carrying a cache created with |
... |
ignored |
from |
scalar denoting first element of sequence |
to |
scalar denoting last element of sequence |
The following functions are turned into S3 generics in order to dispatch
methods for integer64()
:
is.double()
returns FALSE
for integer64
:
currently only dispatches at its first argument, thus
as.integer64(1):9
works but 1:as.integer64(9)
doesn't
match()
currently only dispatches at its first argument and expects
its second argument also to be integer64, otherwise throws an error.
Beware of something like match(2, as.integer64(0:3))
%in%
currently only dispatches at its first argument and expects
its second argument also to be integer64, otherwise throws an error.
Beware of something like 2 %in% as.integer64(0:3)
order()
currently only orders a single argument, trying more than
one raises an error
is.double(as.integer64(1)) as.integer64(1):9 match(as.integer64(2), as.integer64(0:3)) as.integer64(2) %in% as.integer64(0:3) unique(as.integer64(c(1,1,2))) rank(as.integer64(c(1,1,2))) order(as.integer64(c(1,NA,2)))
is.double(as.integer64(1)) as.integer64(1):9 match(as.integer64(2), as.integer64(0:3)) as.integer64(2) %in% as.integer64(0:3) unique(as.integer64(c(1,1,2))) rank(as.integer64(c(1,1,2))) order(as.integer64(c(1,NA,2)))
The ususal functions 'c', 'cbind' and 'rbind'
## S3 method for class 'integer64' c(..., recursive = FALSE) ## S3 method for class 'integer64' cbind(...) ## S3 method for class 'integer64' rbind(...)
## S3 method for class 'integer64' c(..., recursive = FALSE) ## S3 method for class 'integer64' cbind(...) ## S3 method for class 'integer64' rbind(...)
... |
two or more arguments coerced to 'integer64' and
passed to |
recursive |
logical. If |
c()
returns a integer64 vector of the total length of the input
cbind()
and rbind()
return a integer64 matrix
R currently only dispatches generic 'c' to method 'c.integer64' if the first argument is 'integer64'
rep.integer64()
seq.integer64()
as.data.frame.integer64()
integer64()
c(as.integer64(1), 2:6) cbind(1:6, as.integer(1:6)) rbind(1:6, as.integer(1:6))
c(as.integer64(1), 2:6) cbind(1:6, as.integer(1:6)) rbind(1:6, as.integer(1:6))
Functions for caching results attached to atomic objects
newcache(x) jamcache(x) cache(x) setcache(x, which, value) getcache(x, which) remcache(x) ## S3 method for class 'cache' print(x, all.names = FALSE, pattern, ...)
newcache(x) jamcache(x) cache(x) setcache(x, which, value) getcache(x, which) remcache(x) ## S3 method for class 'cache' print(x, all.names = FALSE, pattern, ...)
x |
an integer64 vector (or a cache object in case of |
which |
A character naming the object to be retrieved from the cache or to be stored in the cache |
value |
An object to be stored in the cache |
all.names , pattern
|
passed to |
... |
ignored |
A cache
is an environment
attached to an atomic object with the
attribute
name 'cache'. It contains at least a reference to the
atomic object that carries the cache. This is used when accessing
the cache to detect whether the object carrying the cache has been
modified meanwhile.
See details
newcache()
: creates a new cache referencing x
jamcache()
: forces x
to have a cache
cache()
: returns the cache attached to x
if it is not
found to be outdated
setcache()
: assigns a value into the cache of x
getcache()
: gets cache value 'which' from x
remcache()
: removes the cache from x
bit::still.identical()
for testing whether to symbols point to the same RAM.
Functions that get and set small cache-content automatically when a cache is present:
bit::na.count()
, bit::nvalid()
, bit::is.sorted()
, bit::nunique()
and
bit::nties()
Setting big caches with a relevant memory footprint requires a conscious decision
of the user: hashcache
, sortcache
, ordercache
, sortordercache
Functions that use big caches: match.integer64()
, %in%.integer64
,
duplicated.integer64()
, unique.integer64()
, unipos()
, table.integer64()
,
keypos()
, tiepos()
, rank.integer64()
, prank()
, qtile()
,
quantile.integer64()
, median.integer64()
, and summary.integer64()
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) y <- x still.identical(x,y) y[1] <- NA still.identical(x,y) mycache <- newcache(x) ls(mycache) mycache rm(mycache) jamcache(x) cache(x) x[1] <- NA cache(x) getcache(x, "abc") setcache(x, "abc", 1) getcache(x, "abc") remcache(x) cache(x)
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) y <- x still.identical(x,y) y[1] <- NA still.identical(x,y) mycache <- newcache(x) ls(mycache) mycache rm(mycache) jamcache(x) cache(x) x[1] <- NA cache(x) getcache(x, "abc") setcache(x, "abc", 1) getcache(x, "abc") remcache(x) cache(x)
Cumulative Sums, Products, Extremes and lagged differences
## S3 method for class 'integer64' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'integer64' cummin(x) ## S3 method for class 'integer64' cummax(x) ## S3 method for class 'integer64' cumsum(x) ## S3 method for class 'integer64' cumprod(x)
## S3 method for class 'integer64' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'integer64' cummin(x) ## S3 method for class 'integer64' cummax(x) ## S3 method for class 'integer64' cumsum(x) ## S3 method for class 'integer64' cumprod(x)
x |
an atomic vector of class 'integer64' |
lag |
see |
differences |
see |
... |
ignored |
cummin()
, cummax()
, cumsum()
and cumprod()
return a integer64 vector of the same length as their input
diff()
returns a integer64 vector shorter by lag*differences
elements
cumsum(rep(as.integer64(1), 12)) diff(as.integer64(c(0,1:12))) cumsum(as.integer64(c(0, 1:12))) diff(cumsum(as.integer64(c(0,0,1:12))), differences=2)
cumsum(rep(as.integer64(1), 12)) diff(as.integer64(c(0,1:12))) cumsum(as.integer64(c(0, 1:12))) diff(cumsum(as.integer64(c(0,0,1:12))), differences=2)
duplicated()
determines which elements of a vector or data frame are duplicates
of elements with smaller subscripts, and returns a logical vector
indicating which elements (rows) are duplicates.
## S3 method for class 'integer64' duplicated(x, incomparables = FALSE, nunique = NULL, method = NULL, ...)
## S3 method for class 'integer64' duplicated(x, incomparables = FALSE, nunique = NULL, method = NULL, ...)
x |
a vector or a data frame or an array or |
incomparables |
ignored |
nunique |
NULL or the number of unique values (including NA). Providing
|
method |
NULL for automatic method selection or a suitable low-level method, see details |
... |
ignored |
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
hashdup
(hashing)
sortorderdup
(fast ordering)
orderdup
(memory saving ordering).
duplicated()
: a logical vector of the same length as x
.
duplicated()
, unique.integer64()
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) duplicated(x) stopifnot(identical(duplicated(x), duplicated(as.integer(x))))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) duplicated(x) stopifnot(identical(duplicated(x), duplicated(as.integer(x))))
Methods to extract and replace parts of an integer64 vector.
## S3 method for class 'integer64' x[i, ...] ## S3 replacement method for class 'integer64' x[...] <- value ## S3 method for class 'integer64' x[[...]] ## S3 replacement method for class 'integer64' x[[...]] <- value
## S3 method for class 'integer64' x[i, ...] ## S3 replacement method for class 'integer64' x[...] <- value ## S3 method for class 'integer64' x[[...]] ## S3 replacement method for class 'integer64' x[[...]] <- value
x |
an atomic vector |
i |
indices specifying elements to extract |
... |
further arguments to the |
value |
an atomic vector with values to be assigned |
A vector or scalar of class 'integer64'
You should not subscript non-existing elements and not use NA
s as subscripts.
The current implementation returns 9218868437227407266
instead of NA
.
as.integer64(1:12)[1:3] x <- as.integer64(1:12) dim(x) <- c(3,4) x x[] x[,2:3]
as.integer64(1:12)[1:3] x <- as.integer64(1:12) dim(x) <- c(3,4) x x[] x[,2:3]
Unary operators and functions for integer64 vectors.
## S3 method for class 'integer64' format(x, justify = "right", ...) ## S3 method for class 'integer64' sign(x) ## S3 method for class 'integer64' abs(x) ## S3 method for class 'integer64' sqrt(x) ## S3 method for class 'integer64' log(x, base = NULL) ## S3 method for class 'integer64' log10(x) ## S3 method for class 'integer64' log2(x) ## S3 method for class 'integer64' trunc(x, ...) ## S3 method for class 'integer64' floor(x) ## S3 method for class 'integer64' ceiling(x) ## S3 method for class 'integer64' signif(x, digits = 6L) ## S3 method for class 'integer64' scale(x, center = TRUE, scale = TRUE) ## S3 method for class 'integer64' round(x, digits = 0L) ## S3 method for class 'integer64' is.na(x) ## S3 method for class 'integer64' is.finite(x) ## S3 method for class 'integer64' is.infinite(x) ## S3 method for class 'integer64' is.nan(x) ## S3 method for class 'integer64' !x
## S3 method for class 'integer64' format(x, justify = "right", ...) ## S3 method for class 'integer64' sign(x) ## S3 method for class 'integer64' abs(x) ## S3 method for class 'integer64' sqrt(x) ## S3 method for class 'integer64' log(x, base = NULL) ## S3 method for class 'integer64' log10(x) ## S3 method for class 'integer64' log2(x) ## S3 method for class 'integer64' trunc(x, ...) ## S3 method for class 'integer64' floor(x) ## S3 method for class 'integer64' ceiling(x) ## S3 method for class 'integer64' signif(x, digits = 6L) ## S3 method for class 'integer64' scale(x, center = TRUE, scale = TRUE) ## S3 method for class 'integer64' round(x, digits = 0L) ## S3 method for class 'integer64' is.na(x) ## S3 method for class 'integer64' is.finite(x) ## S3 method for class 'integer64' is.infinite(x) ## S3 method for class 'integer64' is.nan(x) ## S3 method for class 'integer64' !x
x |
an atomic vector of class 'integer64' |
justify |
should it be right-justified (the default), left-justified, centred or left alone. |
... |
further arguments to the |
base |
an atomic scalar (we save 50% log-calls by not allowing a vector base) |
digits |
integer indicating the number of decimal places (round)
or significant digits (signif) to be used. Negative values are allowed
(see |
center |
see |
scale |
see |
format()
returns a character vector
is.na()
and !
return a logical vector
sqrt()
, log()
, log2()
and log10()
return a double vector
sign()
, abs()
, floor()
, ceiling()
, trunc()
and
round()
return a vector of class 'integer64'
signif()
is not implemented
sqrt(as.integer64(1:12))
sqrt(as.integer64(1:12))
Functions to create cache that accelerates many operations
hashcache(x, nunique = NULL, ...) sortcache(x, has.na = NULL) sortordercache(x, has.na = NULL, stable = NULL) ordercache(x, has.na = NULL, stable = NULL, optimize = "time")
hashcache(x, nunique = NULL, ...) sortcache(x, has.na = NULL) sortordercache(x, has.na = NULL, stable = NULL) ordercache(x, has.na = NULL, stable = NULL, optimize = "time")
x |
an atomic vector (note that currently only integer64 is supported) |
nunique |
giving correct number of unique elements can help reducing the size of the hashmap |
... |
passed to |
has.na |
boolean scalar defining whether the input vector might contain
|
stable |
boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up. |
optimize |
by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed. |
The result of relative expensive operations hashmap()
, bit::ramsort()
,
bit::ramsortorder()
, and bit::ramorder()
can be stored in a cache in
order to avoid multiple excutions. Unless in very specific situations, the
recommended method is hashsortorder
only.
x
with a cache()
that contains the result of the expensive operations,
possible together with small derived information (such as nunique.integer64()
)
and previously cached results.
Note that we consider storing the big results from sorting and/or ordering as a relevant side-effect, and therefore storing them in the cache should require a conscious decision of the user.
cache()
for caching functions and nunique.integer64()
for methods benefiting
from small caches
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) sortordercache(x)
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) sortordercache(x)
This is an explicit implementation of hash functionality that underlies matching and other functions in R. Explicit means that you can create, store and use hash functionality directly. One advantage is that you can re-use hashmaps, which avoid re-building hashmaps again and again.
hashfun(x, ...) ## S3 method for class 'integer64' hashfun(x, minfac = 1.41, hashbits = NULL, ...) hashmap(x, ...) ## S3 method for class 'integer64' hashmap(x, nunique = NULL, minfac = 1.41, hashbits = NULL, cache = NULL, ...) hashpos(cache, ...) ## S3 method for class 'cache_integer64' hashpos(cache, x, nomatch = NA_integer_, ...) hashrev(cache, ...) ## S3 method for class 'cache_integer64' hashrev(cache, x, nomatch = NA_integer_, ...) hashfin(cache, ...) ## S3 method for class 'cache_integer64' hashfin(cache, x, ...) hashrin(cache, ...) ## S3 method for class 'cache_integer64' hashrin(cache, x, ...) hashdup(cache, ...) ## S3 method for class 'cache_integer64' hashdup(cache, ...) hashuni(cache, ...) ## S3 method for class 'cache_integer64' hashuni(cache, keep.order = FALSE, ...) hashupo(cache, ...) ## S3 method for class 'cache_integer64' hashupo(cache, keep.order = FALSE, ...) hashtab(cache, ...) ## S3 method for class 'cache_integer64' hashtab(cache, ...) hashmaptab(x, ...) ## S3 method for class 'integer64' hashmaptab(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...) hashmapuni(x, ...) ## S3 method for class 'integer64' hashmapuni(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...) hashmapupo(x, ...) ## S3 method for class 'integer64' hashmapupo(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...)
hashfun(x, ...) ## S3 method for class 'integer64' hashfun(x, minfac = 1.41, hashbits = NULL, ...) hashmap(x, ...) ## S3 method for class 'integer64' hashmap(x, nunique = NULL, minfac = 1.41, hashbits = NULL, cache = NULL, ...) hashpos(cache, ...) ## S3 method for class 'cache_integer64' hashpos(cache, x, nomatch = NA_integer_, ...) hashrev(cache, ...) ## S3 method for class 'cache_integer64' hashrev(cache, x, nomatch = NA_integer_, ...) hashfin(cache, ...) ## S3 method for class 'cache_integer64' hashfin(cache, x, ...) hashrin(cache, ...) ## S3 method for class 'cache_integer64' hashrin(cache, x, ...) hashdup(cache, ...) ## S3 method for class 'cache_integer64' hashdup(cache, ...) hashuni(cache, ...) ## S3 method for class 'cache_integer64' hashuni(cache, keep.order = FALSE, ...) hashupo(cache, ...) ## S3 method for class 'cache_integer64' hashupo(cache, keep.order = FALSE, ...) hashtab(cache, ...) ## S3 method for class 'cache_integer64' hashtab(cache, ...) hashmaptab(x, ...) ## S3 method for class 'integer64' hashmaptab(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...) hashmapuni(x, ...) ## S3 method for class 'integer64' hashmapuni(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...) hashmapupo(x, ...) ## S3 method for class 'integer64' hashmapupo(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...)
x |
an integer64 vector |
... |
further arguments, passed from generics, ignored in methods |
minfac |
minimum factor by which the hasmap has more elements compared to the data |
hashbits |
length of hashmap is |
nunique |
giving correct number of unique elements can help reducing the size of the hashmap |
cache |
an optional |
nomatch |
the value to be returned if an element is not found in the hashmap |
keep.order |
determines order of results and speed: |
function | see also | description |
hashfun |
digest |
export of the hash function used in hashmap |
hashmap |
match() |
return hashmap |
hashpos |
match() |
return positions of x in hashmap |
hashrev |
match() |
return positions of hashmap in x |
hashfin |
%in%.integer64 |
return logical whether x is in hashmap |
hashrin |
%in%.integer64 |
return logical whether hashmap is in x |
hashdup |
duplicated() |
return logical whether hashdat is duplicated using hashmap |
hashuni |
unique() |
return unique values of hashmap |
hashmapuni |
unique() |
return unique values of x |
hashupo |
unique() |
return positions of unique values in hashdat |
hashmapupo |
unique() |
return positions of unique values in x |
hashtab |
table() |
tabulate values of hashdat using hashmap in keep.order=FALSE |
hashmaptab |
table() |
tabulate values of x building hasmap on the fly in keep.order=FALSE |
See Details
x <- as.integer64(sample(c(NA, 0:9))) y <- as.integer64(sample(c(NA, 1:9), 10, TRUE)) hashfun(y) hx <- hashmap(x) hy <- hashmap(y) ls(hy) hashpos(hy, x) hashrev(hx, y) hashfin(hy, x) hashrin(hx, y) hashdup(hy) hashuni(hy) hashuni(hy, keep.order=TRUE) hashmapuni(y) hashupo(hy) hashupo(hy, keep.order=TRUE) hashmapupo(y) hashtab(hy) hashmaptab(y) stopifnot(identical(match(as.integer(x),as.integer(y)),hashpos(hy, x))) stopifnot(identical(match(as.integer(x),as.integer(y)),hashrev(hx, y))) stopifnot(identical(as.integer(x) %in% as.integer(y), hashfin(hy, x))) stopifnot(identical(as.integer(x) %in% as.integer(y), hashrin(hx, y))) stopifnot(identical(duplicated(as.integer(y)), hashdup(hy))) stopifnot(identical(as.integer64(unique(as.integer(y))), hashuni(hy, keep.order=TRUE))) stopifnot(identical(sort(hashuni(hy, keep.order=FALSE)), sort(hashuni(hy, keep.order=TRUE)))) stopifnot(identical(y[hashupo(hy, keep.order=FALSE)], hashuni(hy, keep.order=FALSE))) stopifnot(identical(y[hashupo(hy, keep.order=TRUE)], hashuni(hy, keep.order=TRUE))) stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=TRUE)), hashupo(hy, keep.order=TRUE))) stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=FALSE)), hashupo(hy, keep.order=FALSE))) stopifnot(identical(hashuni(hy, keep.order=FALSE), hashtab(hy)$values)) stopifnot(identical(as.vector(table(as.integer(y), useNA="ifany")) , hashtab(hy)$counts[order.integer64(hashtab(hy)$values)])) stopifnot(identical(hashuni(hy, keep.order=TRUE), hashmapuni(y))) stopifnot(identical(hashupo(hy, keep.order=TRUE), hashmapupo(y))) stopifnot(identical(hashtab(hy), hashmaptab(y))) ## Not run: message("explore speed given size of the hasmap in 2^hashbits and size of the data") message("more hashbits means more random access and less collisions") message("i.e. more data means less random access and more collisions") bits <- 24 b <- seq(-1, 0, 0.1) tim <- matrix(NA, length(b), 2, dimnames=list(b, c("bits","bits+1"))) for (i in 1:length(b)){ n <- as.integer(2^(bits+b[i])) x <- as.integer64(sample(n)) tim[i,1] <- repeat.time(hashmap(x, hashbits=bits))[3] tim[i,2] <- repeat.time(hashmap(x, hashbits=bits+1))[3] print(tim) matplot(b, tim) } message("we conclude that n*sqrt(2) is enough to avoid collisions") ## End(Not run)
x <- as.integer64(sample(c(NA, 0:9))) y <- as.integer64(sample(c(NA, 1:9), 10, TRUE)) hashfun(y) hx <- hashmap(x) hy <- hashmap(y) ls(hy) hashpos(hy, x) hashrev(hx, y) hashfin(hy, x) hashrin(hx, y) hashdup(hy) hashuni(hy) hashuni(hy, keep.order=TRUE) hashmapuni(y) hashupo(hy) hashupo(hy, keep.order=TRUE) hashmapupo(y) hashtab(hy) hashmaptab(y) stopifnot(identical(match(as.integer(x),as.integer(y)),hashpos(hy, x))) stopifnot(identical(match(as.integer(x),as.integer(y)),hashrev(hx, y))) stopifnot(identical(as.integer(x) %in% as.integer(y), hashfin(hy, x))) stopifnot(identical(as.integer(x) %in% as.integer(y), hashrin(hx, y))) stopifnot(identical(duplicated(as.integer(y)), hashdup(hy))) stopifnot(identical(as.integer64(unique(as.integer(y))), hashuni(hy, keep.order=TRUE))) stopifnot(identical(sort(hashuni(hy, keep.order=FALSE)), sort(hashuni(hy, keep.order=TRUE)))) stopifnot(identical(y[hashupo(hy, keep.order=FALSE)], hashuni(hy, keep.order=FALSE))) stopifnot(identical(y[hashupo(hy, keep.order=TRUE)], hashuni(hy, keep.order=TRUE))) stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=TRUE)), hashupo(hy, keep.order=TRUE))) stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=FALSE)), hashupo(hy, keep.order=FALSE))) stopifnot(identical(hashuni(hy, keep.order=FALSE), hashtab(hy)$values)) stopifnot(identical(as.vector(table(as.integer(y), useNA="ifany")) , hashtab(hy)$counts[order.integer64(hashtab(hy)$values)])) stopifnot(identical(hashuni(hy, keep.order=TRUE), hashmapuni(y))) stopifnot(identical(hashupo(hy, keep.order=TRUE), hashmapupo(y))) stopifnot(identical(hashtab(hy), hashmaptab(y))) ## Not run: message("explore speed given size of the hasmap in 2^hashbits and size of the data") message("more hashbits means more random access and less collisions") message("i.e. more data means less random access and more collisions") bits <- 24 b <- seq(-1, 0, 0.1) tim <- matrix(NA, length(b), 2, dimnames=list(b, c("bits","bits+1"))) for (i in 1:length(b)){ n <- as.integer(2^(bits+b[i])) x <- as.integer64(sample(n)) tim[i,1] <- repeat.time(hashmap(x, hashbits=bits))[3] tim[i,2] <- repeat.time(hashmap(x, hashbits=bits+1))[3] print(tim) matplot(b, tim) } message("we conclude that n*sqrt(2) is enough to avoid collisions") ## End(Not run)
This will discover any deviation between objects containing integer64 vectors.
identical.integer64( x, y, num.eq = FALSE, single.NA = FALSE, attrib.as.set = TRUE, ignore.bytecode = TRUE, ignore.environment = FALSE, ignore.srcref = TRUE, ... )
identical.integer64( x, y, num.eq = FALSE, single.NA = FALSE, attrib.as.set = TRUE, ignore.bytecode = TRUE, ignore.environment = FALSE, ignore.srcref = TRUE, ... )
x , y
|
Atomic vector of class 'integer64' |
num.eq , single.NA , attrib.as.set , ignore.bytecode , ignore.environment , ignore.srcref
|
See |
... |
Passed on to |
This is simply a wrapper to identical()
with default arguments
num.eq = FALSE, single.NA = FALSE
.
A single logical value, TRUE
or FALSE
, never NA
and never
anything other than a single value.
==.integer64
identical()
integer64()
i64 <- as.double(NA); class(i64) <- "integer64" identical(i64-1, i64+1) identical.integer64(i64-1, i64+1)
i64 <- as.double(NA); class(i64) <- "integer64" identical(i64-1, i64+1) identical.integer64(i64-1, i64+1)
These methods are packaged here for methods in packages bit64
and ff
.
## S3 method for class 'integer64' na.count(x, ...) ## S3 method for class 'integer64' nvalid(x, ...) ## S3 method for class 'integer64' is.sorted(x, ...) ## S3 method for class 'integer64' nunique(x, ...) ## S3 method for class 'integer64' nties(x, ...)
## S3 method for class 'integer64' na.count(x, ...) ## S3 method for class 'integer64' nvalid(x, ...) ## S3 method for class 'integer64' is.sorted(x, ...) ## S3 method for class 'integer64' nunique(x, ...) ## S3 method for class 'integer64' nties(x, ...)
x |
some object |
... |
ignored |
All these functions benefit from a sortcache()
, ordercache()
or
sortordercache()
. na.count()
, nvalid()
and nunique()
also
benefit from a hashcache()
.
is.sorted
returns a logical scalar, the other methods return an integer scalar.
na.count(integer64)
: returns the number of NA
s
nvalid(integer64)
: returns the number of valid data points,
usually length()
minus na.count
.
is.sorted(integer64)
: checks for sortedness of x
(NAs sorted first)
nunique(integer64)
: returns the number of unique values
nties(integer64)
: returns the number of tied values.
If a cache()
exists but the desired value is not cached, then these
functions will store their result in the cache. We do not consider this
a relevant side-effect, since these small cache results do not have a
relevant memory footprint.
cache()
for caching functions and sortordercache()
for functions creating big caches
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) length(x) na.count(x) nvalid(x) nunique(x) nties(x) table.integer64(x) x
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) length(x) na.count(x) nvalid(x) nunique(x) nties(x) table.integer64(x) x
keypos
returns the positions of the (fact table) elements that participate
in their sorted unique subset (dimension table)
keypos(x, ...) ## S3 method for class 'integer64' keypos(x, method = NULL, ...)
keypos(x, ...) ## S3 method for class 'integer64' keypos(x, method = NULL, ...)
x |
a vector or a data frame or an array or |
... |
ignored |
method |
NULL for automatic method selection or a suitable low-level method, see details |
NAs are sorted first in the dimension table, see ramorder.integer64()
.
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
sortorderkey
(fast ordering)
orderkey
(memory saving ordering).
an integer vector of the same length as x
containing positions
relative to sort(unique(x), na.last=FALSE)
unique.integer64()
for the unique subset and match.integer64()
for finding positions in a different vector.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) keypos(x) stopifnot(identical(keypos(x), match.integer64(x, sort(unique(x), na.last=FALSE))))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) keypos(x) stopifnot(identical(keypos(x), match.integer64(x, sort(unique(x), na.last=FALSE))))
match
returns a vector of the positions of (first) matches of its first
argument in its second.
%in%
is a more intuitive interface as a binary operator, which returns a
logical vector indicating if there is a match or not for its left operand.
## S3 method for class 'integer64' match(x, table, nomatch = NA_integer_, nunique = NULL, method = NULL, ...) ## S3 method for class 'integer64' x %in% table, ...
## S3 method for class 'integer64' match(x, table, nomatch = NA_integer_, nunique = NULL, method = NULL, ...) ## S3 method for class 'integer64' x %in% table, ...
x |
integer64 vector: the values to be matched, optionally carrying a
cache created with |
table |
integer64 vector: the values to be matched against, optionally
carrying a cache created with |
nomatch |
the value to be returned in the case when no match is found. Note that it is coerced to integer. |
nunique |
NULL or the number of unique values of table (including NA).
Providing |
method |
NULL for automatic method selection or a suitable low-level method, see details |
... |
ignored |
These functions automatically choose from several low-level functions
considering the size of x
and table
and the availability of caches.
Suitable methods for %in%.integer64
are
hashpos
(hash table lookup)
hashrev
(reverse lookup)
sortorderpos
(fast ordering)
orderpos
(memory saving ordering).
Suitable methods for match.integer64
are
hashfin
(hash table lookup)
hashrin
(reverse lookup)
sortfin
(fast sorting)
orderfin
(memory saving ordering).
A vector of the same length as x
.
match
: An integer vector giving the position in table
of
the first match if there is a match, otherwise nomatch
.
If x[i]
is found to equal table[j]
then the value
returned in the i
-th position of the return value is j
,
for the smallest possible j
. If no match is found, the value
is nomatch
.
%in%
: A logical vector, indicating if a match was located for
each element of x
: thus the values are TRUE
or
FALSE
and never NA
.
x <- as.integer64(c(NA, 0:9), 32) table <- as.integer64(c(1:9, NA)) match.integer64(x, table) "%in%.integer64"(x, table) x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE)) table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table)))) stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table))) ## Not run: message("check when reverse hash-lookup beats standard hash-lookup") e <- 4:24 timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e)) for (iy in seq_along(e)) for (ix in 1:iy){ nx <- 2^e[ix] ny <- 2^e[iy] x <- as.integer64(sample(ny, nx, FALSE)) y <- as.integer64(sample(ny, ny, FALSE)) #hashfun(x, bits=as.integer(5)) timx[ix,iy] <- repeat.time({ hx <- hashmap(x) py <- hashrev(hx, y) })[3] timy[ix,iy] <- repeat.time({ hy <- hashmap(y) px <- hashpos(hy, x) })[3] #identical(px, py) print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="") } message("explore best low-level method given size of x and table") B1 <- 1:27 B2 <- 1:27 tim <- array(NA, dim=c(length(B1), length(B2), 5) , dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3"))) for (i1 in B1) for (i2 in B2) { b1 <- B1[i1] b2 <- B1[i2] n1 <- 2^b1 n2 <- 2^b2 x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA)) x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA)) tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3] tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3] s <- clone(x2); o <- seq_along(s); ramsortorder(s, o) tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3] tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3] tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3] rm(s,o) print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti))) } ## End(Not run)
x <- as.integer64(c(NA, 0:9), 32) table <- as.integer64(c(1:9, NA)) match.integer64(x, table) "%in%.integer64"(x, table) x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE)) table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table)))) stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table))) ## Not run: message("check when reverse hash-lookup beats standard hash-lookup") e <- 4:24 timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e)) for (iy in seq_along(e)) for (ix in 1:iy){ nx <- 2^e[ix] ny <- 2^e[iy] x <- as.integer64(sample(ny, nx, FALSE)) y <- as.integer64(sample(ny, ny, FALSE)) #hashfun(x, bits=as.integer(5)) timx[ix,iy] <- repeat.time({ hx <- hashmap(x) py <- hashrev(hx, y) })[3] timy[ix,iy] <- repeat.time({ hy <- hashmap(y) px <- hashpos(hy, x) })[3] #identical(px, py) print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="") } message("explore best low-level method given size of x and table") B1 <- 1:27 B2 <- 1:27 tim <- array(NA, dim=c(length(B1), length(B2), 5) , dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3"))) for (i1 in B1) for (i2 in B2) { b1 <- B1[i1] b2 <- B1[i2] n1 <- 2^b1 n2 <- 2^b2 x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA)) x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA)) tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3] tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3] s <- clone(x2); o <- seq_along(s); ramsortorder(s, o) tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3] tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3] tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3] rm(s,o) print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti))) } ## End(Not run)
These functions and methods facilitate working with integer64 objects stored in matrices. As ever, the primary motivation for having tailor-made functions here is that R's methods often receive input from bit64 and treat the vectors as doubles, leading to unexpected and/or incorrect results.
colSums(x, na.rm = FALSE, dims = 1L) ## Default S3 method: colSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' colSums(x, na.rm = FALSE, dims = 1L) rowSums(x, na.rm = FALSE, dims = 1L) ## Default S3 method: rowSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' rowSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' aperm(a, perm, ...)
colSums(x, na.rm = FALSE, dims = 1L) ## Default S3 method: colSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' colSums(x, na.rm = FALSE, dims = 1L) rowSums(x, na.rm = FALSE, dims = 1L) ## Default S3 method: rowSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' rowSums(x, na.rm = FALSE, dims = 1L) ## S3 method for class 'integer64' aperm(a, perm, ...)
x |
An array of integer64 numbers. |
na.rm , dims
|
Same interpretation as in |
a , perm
|
Passed on to |
... |
Passed on to subsequent methods. |
As of now, the colSums()
and rowSums()
methods are implemented
as wrappers around equivalent apply()
approaches, because
re-using the default routine (and then applying integer64 to the
result) does not work for objects with missing elements. Ideally
this would eventually get its own dedicated C routine mimicking
that of colSums()
for integers; feature requests and PRs welcome.
aperm()
is required for apply()
to work, in general, otherwise
FUN
gets applied to a class-stripped version of the input.
A = as.integer64(1:6) dim(A) = 3:2 colSums(A) rowSums(A) aperm(A, 2:1)
A = as.integer64(1:6) dim(A) = 3:2 colSums(A) rowSums(A) aperm(A, 2:1)
These are the results of calling optimizer64()
data(optimizer64.data)
data(optimizer64.data)
The format is:
List of 16 $ : num [1:9, 1:3] 0 0 1.63 0.00114 2.44 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0 1.62 0.00114 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0.00105 0.00313 0.00313 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:15, 1:3] 0 0 0 0.00104 0.00104 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:14, 1:3] 0 0 0 0.000992 0.000992 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:13, 1:3] 0 0 0 0 0.000419 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:7, 1:3] 0 0 0 0.00236 0.00714 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:6, 1:3] 0 0 0.00189 0.00714 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:9, 1:3] 0 0 0.00105 1.17 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 0 0.00104 1.18 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:10, 1:3] 0 0 1.64 2.48 2.48 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:15, 1:3] 0 0 0 1.64 1.64 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:14, 1:3] 0 0 0 1.62 1.62 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:13, 1:3] 0 0 0 0 0.32 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:7, 1:3] 0 0 0 2.96 10.69 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ... .. ..$ : chr [1:3] "prep" "both" "use" $ : num [1:6, 1:3] 0 0 1.62 10.61 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ... .. ..$ : chr [1:3] "prep" "both" "use" - attr(*, "dim")= int [1:2] 8 2 - attr(*, "dimnames")=List of 2 ..$ : chr [1:8] "match" "%in%" "duplicated" "unique" ... ..$ : chr [1:2] "65536" "33554432"
data(optimizer64.data) print(optimizer64.data) oldpar <- par(no.readonly = TRUE) par(mfrow=c(2,1)) par(cex=0.7) for (i in 1:nrow(optimizer64.data)){ for (j in 1:2){ tim <- optimizer64.data[[i,j]] barplot(t(tim)) if (rownames(optimizer64.data)[i]=="match") title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j])) else if (rownames(optimizer64.data)[i]=="%in%") title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j])) else title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j])) } } par(mfrow=c(1,1))
data(optimizer64.data) print(optimizer64.data) oldpar <- par(no.readonly = TRUE) par(mfrow=c(2,1)) par(cex=0.7) for (i in 1:nrow(optimizer64.data)){ for (j in 1:2){ tim <- optimizer64.data[[i,j]] barplot(t(tim)) if (rownames(optimizer64.data)[i]=="match") title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j])) else if (rownames(optimizer64.data)[i]=="%in%") title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j])) else title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j])) } } par(mfrow=c(1,1))
Function prank.integer64
projects the values [min..max]
via ranks
[1..n]
to [0..1]
.
qtile.integer64()
is the inverse function of 'prank.integer64' and
projects [0..1]
to [min..max]
.
prank(x, ...) ## S3 method for class 'integer64' prank(x, method = NULL, ...)
prank(x, ...) ## S3 method for class 'integer64' prank(x, method = NULL, ...)
x |
a integer64 vector |
... |
ignored |
method |
NULL for automatic method selection or a suitable low-level method, see details |
Function prank.integer64
is based on rank.integer64()
.
prank
returns a numeric vector of the same length as x
.
rank.integer64()
for simple ranks and qtile()
for the
inverse function quantiles.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) prank(x) x <- x[!is.na(x)] stopifnot(identical(x, unname(qtile(x, probs=prank(x)))))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) prank(x) x <- x[!is.na(x)] stopifnot(identical(x, unname(qtile(x, probs=prank(x)))))
Function prank.integer64()
projects the values [min..max]
via ranks
[1..n]
to [0..1]
.
qtile(x, probs = seq(0, 1, 0.25), ...) ## S3 method for class 'integer64' qtile(x, probs = seq(0, 1, 0.25), names = TRUE, method = NULL, ...) ## S3 method for class 'integer64' quantile( x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 0L, ... ) ## S3 method for class 'integer64' median(x, na.rm = FALSE, ...) ## S3 method for class 'integer64' mean(x, na.rm = FALSE, ...) ## S3 method for class 'integer64' summary(object, ...)
qtile(x, probs = seq(0, 1, 0.25), ...) ## S3 method for class 'integer64' qtile(x, probs = seq(0, 1, 0.25), names = TRUE, method = NULL, ...) ## S3 method for class 'integer64' quantile( x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 0L, ... ) ## S3 method for class 'integer64' median(x, na.rm = FALSE, ...) ## S3 method for class 'integer64' mean(x, na.rm = FALSE, ...) ## S3 method for class 'integer64' summary(object, ...)
x |
a integer64 vector |
probs |
numeric vector of probabilities with values in |
... |
ignored |
names |
logical; if |
method |
NULL for automatic method selection or a suitable low-level method, see details |
na.rm |
logical; if |
type |
an integer selecting the quantile algorithm, currently only 0 is supported, see details |
object |
a integer64 vector |
qtile.ineger64
is the inverse function of 'prank.integer64' and projects
[0..1]
to [min..max]
.
Functions quantile.integer64
with type=0
and median.integer64
are
convenience wrappers to qtile
.
Function qtile
behaves very similar to quantile.default
with type=1
in that it only returns existing values, it is mostly symmetric but it is
using 'round' rather than 'floor'.
Note that this implies that median.integer64
does not interpolate for even
number of values (interpolation would create values that could not be
represented as 64-bit integers).
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
prank
returns a numeric vector of the same length as x
.
qtile
returns a vector with elements from x
at the relative positions specified by probs
.
rank.integer64()
for simple ranks and quantile()
for quantiles.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) qtile(x, probs=seq(0, 1, 0.25)) quantile(x, probs=seq(0, 1, 0.25), na.rm=TRUE) median(x, na.rm=TRUE) summary(x) x <- x[!is.na(x)] stopifnot(identical(x, unname(qtile(x, probs=prank(x)))))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) qtile(x, probs=seq(0, 1, 0.25)) quantile(x, probs=seq(0, 1, 0.25), na.rm=TRUE) median(x, na.rm=TRUE) summary(x) x <- x[!is.na(x)] stopifnot(identical(x, unname(qtile(x, probs=prank(x)))))
Fast low-level methods for sorting and ordering. The ..sortorder
methods do sorting and ordering at once, which requires more RAM
than ordering but is (almost) as fast as as sorting.
## S3 method for class 'integer64' shellsort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' shellsortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' shellorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergesort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergeorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergesortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' quicksort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' quicksortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' quickorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' radixsort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' radixsortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' radixorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' ramsort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' ramsortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' ramorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... )
## S3 method for class 'integer64' shellsort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' shellsortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' shellorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergesort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergeorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' mergesortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...) ## S3 method for class 'integer64' quicksort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' quicksortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' quickorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, restlevel = floor(1.5 * log2(length(x))), ... ) ## S3 method for class 'integer64' radixsort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' radixsortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' radixorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, radixbits = 8L, ... ) ## S3 method for class 'integer64' ramsort( x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' ramsortorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' ramorder( x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... )
x |
a vector to be sorted by |
has.na |
boolean scalar defining whether the input vector might contain
|
na.last |
boolean scalar telling ramsort whether to sort |
decreasing |
boolean scalar telling ramsort whether to sort increasing or decreasing |
... |
further arguments, passed from generics, ignored in methods |
i |
integer positions to be modified by |
restlevel |
number of remaining recursionlevels before |
radixbits |
size of radix in bits |
stable |
boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up. |
optimize |
by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed |
VERBOSE |
cat some info about chosen method |
See bit::ramsort()
These functions return the number of NAs
found or assumed
during sorting
Note that these methods purposely violate the functional programming
paradigm: they are called for the side-effect of changing some of
their arguments. The sort
-methods change x
, the order
-methods
change i
, and the sortoder
-methods change both x
and i
bit::ramsort()
for the generic, ramsort.default
for the methods
provided by package ff, sort.integer64()
for the sort interface and
sortcache()
for caching the work of sorting
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) x message("ramsort example") s <- clone(x) ramsort(s) message("s has been changed in-place - whether or not ramsort uses an in-place algorithm") s message("ramorder example") s <- clone(x) o <- seq_along(s) ramorder(s, o) message("o has been changed in-place - s remains unchanged") s o s[o] message("ramsortorder example") o <- seq_along(s) ramsortorder(s, o) message("s and o have both been changed in-place - this is much faster") s o
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) x message("ramsort example") s <- clone(x) ramsort(s) message("s has been changed in-place - whether or not ramsort uses an in-place algorithm") s message("ramorder example") s <- clone(x) o <- seq_along(s) ramorder(s, o) message("o has been changed in-place - s remains unchanged") s o s[o] message("ramsortorder example") o <- seq_along(s) ramsortorder(s, o) message("s and o have both been changed in-place - this is much faster") s o
Returns the sample ranks of the values in a vector. Ties (i.e., equal values) are averaged and missing values propagated.
## S3 method for class 'integer64' rank(x, method = NULL, ...)
## S3 method for class 'integer64' rank(x, method = NULL, ...)
x |
a integer64 vector |
method |
NULL for automatic method selection or a suitable low-level method, see details |
... |
ignored |
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
sortorderrnk()
(fast ordering)
orderrnk()
(memory saving ordering).
A numeric vector of the same length as x
.
order.integer64()
, rank()
and prank()
for percent rank.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) rank.integer64(x) stopifnot(identical(rank.integer64(x), rank(as.integer(x) , na.last="keep", ties.method = "average")))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) rank.integer64(x) stopifnot(identical(rank.integer64(x), rank(as.integer(x) , na.last="keep", ties.method = "average")))
Replicate elements of integer64 vectors
x |
a vector of 'integer64' to be replicated |
... |
further arguments passed to |
rep()
returns a integer64 vector
c.integer64()
rep.integer64()
as.data.frame.integer64()
integer64()
rep(as.integer64(1:2), 6) rep(as.integer64(1:2), c(6,6)) rep(as.integer64(1:2), length.out=6)
rep(as.integer64(1:2), 6) rep(as.integer64(1:2), c(6,6)) rep(as.integer64(1:2), length.out=6)
Create uniform random 64-bit integers within defined range
runif64( n, min = lim.integer64()[1L], max = lim.integer64()[2L], replace = TRUE )
runif64( n, min = lim.integer64()[1L], max = lim.integer64()[2L], replace = TRUE )
n |
length of return vector |
min |
lower inclusive bound for random numbers |
max |
upper inclusive bound for random numbers |
replace |
set to FALSE for sampleing from a finite pool, see |
For each random integer we call R's internal C interface unif_rand()
twice.
Each call is mapped to 2^32 unsigned integers. The two 32-bit patterns are
concatenated to form the new integer64. This process is repeated until the
result is not a NA_INTEGER64_
.
a integer64 vector
runif64(12) runif64(12, -16, 16) runif64(12, 0, as.integer64(2^60)-1) # not 2^60-1 ! var(runif(1e4)) var(as.double(runif64(1e4, 0, 2^40))/2^40) # ~ = 1/12 = .08333 table(sample(16, replace=FALSE)) table(runif64(16, 1, 16, replace=FALSE)) table(sample(16, replace=TRUE)) table(runif64(16, 1, 16, replace=TRUE))
runif64(12) runif64(12, -16, 16) runif64(12, 0, as.integer64(2^60)-1) # not 2^60-1 ! var(runif(1e4)) var(as.double(runif64(1e4, 0, 2^40))/2^40) # ~ = 1/12 = .08333 table(sample(16, replace=FALSE)) table(runif64(16, 1, 16, replace=FALSE)) table(sample(16, replace=TRUE)) table(runif64(16, 1, 16, replace=TRUE))
Generating sequence of integer64 values
from |
integer64 scalar (in order to dispatch the integer64 method of |
to |
scalar |
by |
scalar |
length.out |
scalar |
along.with |
scalar |
... |
ignored |
seq.integer64
does coerce its arguments 'from', 'to' and 'by' to integer64
.
If not provided, the argument 'by' is automatically determined as +1
or -1
,
but the size of 'by' is not calculated as in seq()
(because this might result
in a non-integer value).
an integer64 vector with the generated sequence
In base R :
currently is not generic and does not dispatch, see section
"Limitations inherited from Base R" in integer64()
c.integer64()
rep.integer64()
as.data.frame.integer64()
integer64()
# colon not activated: as.integer64(1):12 seq(as.integer64(1), 12, 2) seq(as.integer64(1), by=2, length.out=6)
# colon not activated: as.integer64(1):12 seq(as.integer64(1), 12, 2) seq(as.integer64(1), by=2, length.out=6)
Fast high-level methods for sorting and ordering. These are wrappers to
ramsort.integer64()
and friends and do not modify their arguments.
## S3 method for class 'integer64' sort( x, decreasing = FALSE, has.na = TRUE, na.last = TRUE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' order( ..., na.last = TRUE, decreasing = FALSE, has.na = TRUE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE )
## S3 method for class 'integer64' sort( x, decreasing = FALSE, has.na = TRUE, na.last = TRUE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE, ... ) ## S3 method for class 'integer64' order( ..., na.last = TRUE, decreasing = FALSE, has.na = TRUE, stable = TRUE, optimize = c("time", "memory"), VERBOSE = FALSE )
x |
a vector to be sorted by |
decreasing |
boolean scalar telling ramsort whether to sort increasing or decreasing |
has.na |
boolean scalar defining whether the input vector might
contain |
na.last |
boolean scalar telling ramsort whether to sort |
stable |
boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up. |
optimize |
by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed |
VERBOSE |
cat some info about chosen method |
... |
further arguments, passed from generics, ignored in methods |
sort
returns the sorted vector and vector
returns the order positions.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) x sort(x) message("the following has default optimize='time' which is faster but requires more RAM , this calls 'ramorder'") order.integer64(x) message("slower with less RAM, this calls 'ramsortorder'") order.integer64(x, optimize="memory")
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) x sort(x) message("the following has default optimize='time' which is faster but requires more RAM , this calls 'ramorder'") order.integer64(x) message("slower with less RAM, this calls 'ramsortorder'") order.integer64(x, optimize="memory")
This is roughly an implementation of hash functionality but based on sorting instead on a hashmap. Since sorting is more informative than hashing we can do some more interesting things.
sortnut(sorted, ...) ## S3 method for class 'integer64' sortnut(sorted, ...) ordernut(table, order, ...) ## S3 method for class 'integer64' ordernut(table, order, ...) sortfin(sorted, x, ...) ## S3 method for class 'integer64' sortfin(sorted, x, method = NULL, ...) orderfin(table, order, x, ...) ## S3 method for class 'integer64' orderfin(table, order, x, method = NULL, ...) orderpos(table, order, x, ...) ## S3 method for class 'integer64' orderpos(table, order, x, nomatch = NA, method = NULL, ...) sortorderpos(sorted, order, x, ...) ## S3 method for class 'integer64' sortorderpos(sorted, order, x, nomatch = NA, method = NULL, ...) orderdup(table, order, ...) ## S3 method for class 'integer64' orderdup(table, order, method = NULL, ...) sortorderdup(sorted, order, ...) ## S3 method for class 'integer64' sortorderdup(sorted, order, method = NULL, ...) sortuni(sorted, nunique, ...) ## S3 method for class 'integer64' sortuni(sorted, nunique, ...) orderuni(table, order, nunique, ...) ## S3 method for class 'integer64' orderuni(table, order, nunique, keep.order = FALSE, ...) sortorderuni(table, sorted, order, nunique, ...) ## S3 method for class 'integer64' sortorderuni(table, sorted, order, nunique, ...) orderupo(table, order, nunique, ...) ## S3 method for class 'integer64' orderupo(table, order, nunique, keep.order = FALSE, ...) sortorderupo(sorted, order, nunique, keep.order = FALSE, ...) ## S3 method for class 'integer64' sortorderupo(sorted, order, nunique, keep.order = FALSE, ...) ordertie(table, order, nties, ...) ## S3 method for class 'integer64' ordertie(table, order, nties, ...) sortordertie(sorted, order, nties, ...) ## S3 method for class 'integer64' sortordertie(sorted, order, nties, ...) sorttab(sorted, nunique, ...) ## S3 method for class 'integer64' sorttab(sorted, nunique, ...) ordertab(table, order, nunique, ...) ## S3 method for class 'integer64' ordertab(table, order, nunique, denormalize = FALSE, keep.order = FALSE, ...) sortordertab(sorted, order, ...) ## S3 method for class 'integer64' sortordertab(sorted, order, denormalize = FALSE, ...) orderkey(table, order, na.skip.num = 0L, ...) ## S3 method for class 'integer64' orderkey(table, order, na.skip.num = 0L, ...) sortorderkey(sorted, order, na.skip.num = 0L, ...) ## S3 method for class 'integer64' sortorderkey(sorted, order, na.skip.num = 0L, ...) orderrnk(table, order, na.count, ...) ## S3 method for class 'integer64' orderrnk(table, order, na.count, ...) sortorderrnk(sorted, order, na.count, ...) ## S3 method for class 'integer64' sortorderrnk(sorted, order, na.count, ...) sortqtl(sorted, na.count, probs, ...) ## S3 method for class 'integer64' sortqtl(sorted, na.count, probs, ...) orderqtl(table, order, na.count, probs, ...) ## S3 method for class 'integer64' orderqtl(table, order, na.count, probs, ...)
sortnut(sorted, ...) ## S3 method for class 'integer64' sortnut(sorted, ...) ordernut(table, order, ...) ## S3 method for class 'integer64' ordernut(table, order, ...) sortfin(sorted, x, ...) ## S3 method for class 'integer64' sortfin(sorted, x, method = NULL, ...) orderfin(table, order, x, ...) ## S3 method for class 'integer64' orderfin(table, order, x, method = NULL, ...) orderpos(table, order, x, ...) ## S3 method for class 'integer64' orderpos(table, order, x, nomatch = NA, method = NULL, ...) sortorderpos(sorted, order, x, ...) ## S3 method for class 'integer64' sortorderpos(sorted, order, x, nomatch = NA, method = NULL, ...) orderdup(table, order, ...) ## S3 method for class 'integer64' orderdup(table, order, method = NULL, ...) sortorderdup(sorted, order, ...) ## S3 method for class 'integer64' sortorderdup(sorted, order, method = NULL, ...) sortuni(sorted, nunique, ...) ## S3 method for class 'integer64' sortuni(sorted, nunique, ...) orderuni(table, order, nunique, ...) ## S3 method for class 'integer64' orderuni(table, order, nunique, keep.order = FALSE, ...) sortorderuni(table, sorted, order, nunique, ...) ## S3 method for class 'integer64' sortorderuni(table, sorted, order, nunique, ...) orderupo(table, order, nunique, ...) ## S3 method for class 'integer64' orderupo(table, order, nunique, keep.order = FALSE, ...) sortorderupo(sorted, order, nunique, keep.order = FALSE, ...) ## S3 method for class 'integer64' sortorderupo(sorted, order, nunique, keep.order = FALSE, ...) ordertie(table, order, nties, ...) ## S3 method for class 'integer64' ordertie(table, order, nties, ...) sortordertie(sorted, order, nties, ...) ## S3 method for class 'integer64' sortordertie(sorted, order, nties, ...) sorttab(sorted, nunique, ...) ## S3 method for class 'integer64' sorttab(sorted, nunique, ...) ordertab(table, order, nunique, ...) ## S3 method for class 'integer64' ordertab(table, order, nunique, denormalize = FALSE, keep.order = FALSE, ...) sortordertab(sorted, order, ...) ## S3 method for class 'integer64' sortordertab(sorted, order, denormalize = FALSE, ...) orderkey(table, order, na.skip.num = 0L, ...) ## S3 method for class 'integer64' orderkey(table, order, na.skip.num = 0L, ...) sortorderkey(sorted, order, na.skip.num = 0L, ...) ## S3 method for class 'integer64' sortorderkey(sorted, order, na.skip.num = 0L, ...) orderrnk(table, order, na.count, ...) ## S3 method for class 'integer64' orderrnk(table, order, na.count, ...) sortorderrnk(sorted, order, na.count, ...) ## S3 method for class 'integer64' sortorderrnk(sorted, order, na.count, ...) sortqtl(sorted, na.count, probs, ...) ## S3 method for class 'integer64' sortqtl(sorted, na.count, probs, ...) orderqtl(table, order, na.count, probs, ...) ## S3 method for class 'integer64' orderqtl(table, order, na.count, probs, ...)
sorted |
a sorted |
... |
further arguments, passed from generics, ignored in methods |
table |
the original data with original order under the sorted vector |
order |
an |
x |
an |
method |
see Details |
nomatch |
the value to be returned if an element is not found in the hashmap |
nunique |
number of unique elements, usually we get this from cache
or call |
keep.order |
determines order of results and speed: |
nties |
number of tied values, usually we get this from cache or
call |
denormalize |
FALSE returns counts of unique values, TRUE returns each value with its counts |
na.skip.num |
0 or the number of |
na.count |
the number of |
probs |
vector of probabilities in |
sortfun | orderfun | sortorderfun | see also | description |
sortnut |
ordernut |
return number of tied and of unique values | ||
sortfin |
orderfin |
%in%.integer64 |
return logical whether x is in table |
|
orderpos |
sortorderpos |
match() |
return positions of x in table |
|
orderdup |
sortorderdup |
duplicated() |
return logical whether values are duplicated | |
sortuni |
orderuni |
sortorderuni |
unique() |
return unique values (=dimensiontable) |
orderupo |
sortorderupo |
unique() |
return positions of unique values | |
ordertie |
sortordertie |
return positions of tied values | ||
orderkey |
sortorderkey |
positions of values in vector of unique values (match in dimensiontable) | ||
sorttab |
ordertab |
sortordertab |
table() |
tabulate frequency of values |
orderrnk |
sortorderrnk |
rank averaging ties | ||
sortqtl |
orderqtl |
return quantiles given probabilities | ||
The functions sortfin
, orderfin
, orderpos
and sortorderpos
each
offer three algorithms for finding x
in table
.
With method=1L
each value of x
is searched independently using
binary search, this is fastest for small table
s.
With method=2L
the values of x
are first sorted and then searched using
doubly exponential search, this is the best allround method.
With method=3L
the values of x
are first sorted and then searched using
simple merging, this is the fastest method if table
is huge and x
has
similar size and distribution of values.
With method=NULL
the functions use a heuristic to determine the fastest
algorithm.
The functions orderdup
and sortorderdup
each offer two algorithms for
setting the truth values in the return vector.
With method=1L
the return values are set directly which causes random
write access on a possibly large return vector.
With method=2L
the return values are first set in a smaller bit-vector –
random access limited to a smaller memory region – and finally written
sequentially to the logical output vector.
With method=NULL
the functions use a heuristic to determine the fastest
algorithm.
see details
message("check the code of 'optimizer64' for examples:") print(optimizer64)
message("check the code of 'optimizer64' for examples:") print(optimizer64)
Summary functions for integer64 vectors. Function 'range' without arguments returns the smallest and largest value of the 'integer64' class.
## S3 method for class 'integer64' any(..., na.rm = FALSE) ## S3 method for class 'integer64' all(..., na.rm = FALSE) ## S3 method for class 'integer64' sum(..., na.rm = FALSE) ## S3 method for class 'integer64' prod(..., na.rm = FALSE) ## S3 method for class 'integer64' min(..., na.rm = FALSE) ## S3 method for class 'integer64' max(..., na.rm = FALSE) ## S3 method for class 'integer64' range(..., na.rm = FALSE, finite = FALSE) lim.integer64()
## S3 method for class 'integer64' any(..., na.rm = FALSE) ## S3 method for class 'integer64' all(..., na.rm = FALSE) ## S3 method for class 'integer64' sum(..., na.rm = FALSE) ## S3 method for class 'integer64' prod(..., na.rm = FALSE) ## S3 method for class 'integer64' min(..., na.rm = FALSE) ## S3 method for class 'integer64' max(..., na.rm = FALSE) ## S3 method for class 'integer64' range(..., na.rm = FALSE, finite = FALSE) lim.integer64()
... |
atomic vectors of class 'integer64' |
na.rm |
logical scalar indicating whether to ignore NAs |
finite |
logical scalar indicating whether to ignore NAs (just for
compatibility with |
The numerical summary methods always return integer64
. Therefore the
methods for min
,max
and range
do not return +Inf,-Inf
on empty
arguments, but +9223372036854775807, -9223372036854775807
(in this sequence).
The same is true if only NA
s are submitted with argument na.rm=TRUE
.
lim.integer64
returns these limits in proper order
-9223372036854775807, +9223372036854775807
and without a warning()
.
all()
and any()
return a logical scalar
range()
returns a integer64 vector with two elements
min()
, max()
, sum()
and prod()
return a integer64 scalar
mean.integer64()
cumsum.integer64()
integer64()
lim.integer64() range(as.integer64(1:12))
lim.integer64() range(as.integer64(1:12))
table.integer64
uses the cross-classifying integer64 vectors to build a
contingency table of the counts at each combination of vector values.
table.integer64( ..., return = c("table", "data.frame", "list"), order = c("values", "counts"), nunique = NULL, method = NULL, dnn = list.names(...), deparse.level = 1L )
table.integer64( ..., return = c("table", "data.frame", "list"), order = c("values", "counts"), nunique = NULL, method = NULL, dnn = list.names(...), deparse.level = 1L )
... |
one or more objects which can be interpreted as factors
(including character strings), or a list (or data frame) whose
components can be so interpreted. (For |
return |
choose the return format, see details |
order |
By default results are created sorted by "values", or by "counts" |
nunique |
NULL or the number of unique values of table (including NA).
Providing |
method |
NULL for automatic method selection or a suitable low-level method, see details |
dnn |
the names to be given to the dimensions in the result (the dimnames names). |
deparse.level |
controls how the default |
This function automatically chooses from several low-level functions considering
the size of x
and the availability of a cache.
Suitable methods are
hashmaptab
(simultaneously creating and using a hashmap)
hashtab
(first creating a hashmap then using it)
sortordertab
(fast ordering)
ordertab
(memory saving ordering).
If the argument dnn
is not supplied, the internal function
list.names
is called to compute the 'dimname names'. If the
arguments in ...
are named, those names are used. For the
remaining arguments, deparse.level = 0
gives an empty name,
deparse.level = 1
uses the supplied argument if it is a symbol,
and deparse.level = 2
will deparse the argument.
Arguments exclude
, useNA
, are not supported, i.e. NA
s are always tabulated,
and, different from table()
they are sorted first if order="values"
.
By default (with return="table"
) table()
returns a
contingency table, an object of class "table"
, an array of integer values.
Note that unlike S the result is always an array, a 1D array if one factor is
given. Note also that for multidimensional arrays this is a dense return
structure which can dramatically increase RAM requirements (for large arrays
with high mutual information, i.e. many possible input combinations of which
only few occur) and that table()
is limited to 2^31
possible combinations
(e.g. two input vectors with 46340 unique values only). Finally note that the
tabulated values or value-combinations are represented as dimnames
and that
the implied conversion of values to strings can cause severe performance
problems since each string needs to be integrated into R's global string cache.
You can use the other return=
options to cope with these problems, the potential
combination limit is increased from 2^31
to 2^63
with these options, RAM is
only required for observed combinations and string conversion is avoided.
With return="data.frame"
you get a dense representation as a data.frame()
(like that resulting from as.data.frame(table(...))
) where only observed
combinations are listed (each as a data.frame row) with the corresponding
frequency counts (the latter as component named by responseName
). This is
the inverse of xtabs()
.
With return="list"
you also get a dense representation as a simple
list()
with components
values
a integer64 vector of the technically tabulated values, for 1D this
is the tabulated values themselves, for kD these are the values representing
the potential combinations of input values
counts
the frequency counts
dims
only for kD: a list with the vectors of the unique values of the
input dimensions
Note that by using as.integer64.factor()
we can also input
factors into table.integer64
– only the levels()
get lost.
table()
for more info on the standard version coping with Base R's
data types, tabulate()
which can faster tabulate integer
s with a limited
range [1L .. nL not too big]
, unique.integer64()
for the unique values
without counting them and unipos.integer64()
for the positions of the unique values.
message("pure integer64 examples") x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) y <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) z <- sample(c(rep(NA, 9), letters), 32, TRUE) table.integer64(x) table.integer64(x, order="counts") table.integer64(x, y) table.integer64(x, y, return="data.frame") message("via as.integer64.factor we can use 'table.integer64' also for factors") table.integer64(x, as.integer64(as.factor(z)))
message("pure integer64 examples") x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) y <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) z <- sample(c(rep(NA, 9), letters), 32, TRUE) table.integer64(x) table.integer64(x, order="counts") table.integer64(x, y) table.integer64(x, y, return="data.frame") message("via as.integer64.factor we can use 'table.integer64' also for factors") table.integer64(x, as.integer64(as.factor(z)))
tiepos
returns the positions of those elements that participate in ties.
tiepos(x, ...) ## S3 method for class 'integer64' tiepos(x, nties = NULL, method = NULL, ...)
tiepos(x, ...) ## S3 method for class 'integer64' tiepos(x, nties = NULL, method = NULL, ...)
x |
a vector or a data frame or an array or |
... |
ignored |
nties |
NULL or the number of tied values (including NA). Providing
|
method |
NULL for automatic method selection or a suitable low-level method, see details |
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
sortordertie
(fast ordering)
ordertie
(memory saving ordering).
an integer vector of positions
rank.integer64()
for possibly tied ranks and unipos.integer64()
for positions of unique values.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) tiepos(x) stopifnot(identical(tiepos(x), (1:length(x))[duplicated(x) | rev(duplicated(rev(x)))]))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) tiepos(x) stopifnot(identical(tiepos(x), (1:length(x))[duplicated(x) | rev(duplicated(rev(x)))]))
unipos
returns the positions of those elements returned by unique()
.
unipos(x, incomparables = FALSE, order = c("original", "values", "any"), ...) ## S3 method for class 'integer64' unipos( x, incomparables = FALSE, order = c("original", "values", "any"), nunique = NULL, method = NULL, ... )
unipos(x, incomparables = FALSE, order = c("original", "values", "any"), ...) ## S3 method for class 'integer64' unipos( x, incomparables = FALSE, order = c("original", "values", "any"), nunique = NULL, method = NULL, ... )
x |
a vector or a data frame or an array or |
incomparables |
ignored |
order |
The order in which positions of unique values will be returned, see details |
... |
ignored |
nunique |
NULL or the number of unique values (including NA). Providing
|
method |
NULL for automatic method selection or a suitable low-level method, see details |
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
hashmapupo
(simultaneously creating and using a hashmap)
hashupo
(first creating a hashmap then using it)
sortorderupo
(fast ordering)
orderupo
(memory saving ordering).
The default order="original"
collects unique values in the order of
the first appearance in x
like in unique()
, this costs extra processing.
order="values"
collects unique values in sorted order like in table()
,
this costs extra processing with the hash methods but comes for free.
order="any"
collects unique values in undefined order, possibly faster.
For hash methods this will be a quasi random order, for sort methods this
will be sorted order.
an integer vector of positions
unique.integer64()
for unique values and match.integer64()
for general matching.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) unipos(x) unipos(x, order="values") stopifnot(identical(unipos(x), (1:length(x))[!duplicated(x)])) stopifnot(identical(unipos(x), match.integer64(unique(x), x))) stopifnot(identical(unipos(x, order="values"), match.integer64(unique(x, order="values"), x))) stopifnot(identical(unique(x), x[unipos(x)])) stopifnot(identical(unique(x, order="values"), x[unipos(x, order="values")]))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) unipos(x) unipos(x, order="values") stopifnot(identical(unipos(x), (1:length(x))[!duplicated(x)])) stopifnot(identical(unipos(x), match.integer64(unique(x), x))) stopifnot(identical(unipos(x, order="values"), match.integer64(unique(x, order="values"), x))) stopifnot(identical(unique(x), x[unipos(x)])) stopifnot(identical(unique(x, order="values"), x[unipos(x, order="values")]))
unique
returns a vector like x
but with duplicate elements/rows removed.
## S3 method for class 'integer64' unique( x, incomparables = FALSE, order = c("original", "values", "any"), nunique = NULL, method = NULL, ... )
## S3 method for class 'integer64' unique( x, incomparables = FALSE, order = c("original", "values", "any"), nunique = NULL, method = NULL, ... )
x |
a vector or a data frame or an array or |
incomparables |
ignored |
order |
The order in which unique values will be returned, see details |
nunique |
NULL or the number of unique values (including NA). Providing
|
method |
NULL for automatic method selection or a suitable low-level method, see details |
... |
ignored |
This function automatically chooses from several low-level functions
considering the size of x
and the availability of a cache.
Suitable methods are
hashmapuni
(simultaneously creating and using a hashmap)
hashuni
(first creating a hashmap then using it)
sortuni
(fast sorting for sorted order only)
sortorderuni
(fast ordering for original order only)
orderuni
(memory saving ordering).
The default order="original"
returns unique values in the order of the
first appearance in x
like in unique()
, this costs extra processing.
order="values"
returns unique values in sorted order like in table()
,
this costs extra processing with the hash methods but comes for free.
order="any"
returns unique values in undefined order, possibly faster.
For hash methods this will be a quasi random order, for sort methods this
will be sorted order.
For a vector, an object of the same type of x
, but with only
one copy of each duplicated element. No attributes are copied (so
the result has no names).
unique()
for the generic, unipos()
which gives the indices
of the unique elements and table.integer64()
which gives frequencies
of the unique elements.
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) unique(x) unique(x, order="values") stopifnot(identical(unique(x), x[!duplicated(x)])) stopifnot(identical(unique(x), as.integer64(unique(as.integer(x))))) stopifnot(identical(unique(x, order="values") , as.integer64(sort(unique(as.integer(x)), na.last=FALSE))))
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE)) unique(x) unique(x, order="values") stopifnot(identical(unique(x), x[!duplicated(x)])) stopifnot(identical(unique(x), as.integer64(unique(as.integer(x))))) stopifnot(identical(unique(x, order="values") , as.integer64(sort(unique(as.integer(x)), na.last=FALSE))))
Binary operators for integer64 vectors.
binattr(e1, e2) ## S3 method for class 'integer64' e1 + e2 ## S3 method for class 'integer64' e1 - e2 ## S3 method for class 'integer64' e1 %/% e2 ## S3 method for class 'integer64' e1 %% e2 ## S3 method for class 'integer64' e1 * e2 ## S3 method for class 'integer64' e1 ^ e2 ## S3 method for class 'integer64' e1 / e2 ## S3 method for class 'integer64' e1 == e2 ## S3 method for class 'integer64' e1 != e2 ## S3 method for class 'integer64' e1 < e2 ## S3 method for class 'integer64' e1 <= e2 ## S3 method for class 'integer64' e1 > e2 ## S3 method for class 'integer64' e1 >= e2 ## S3 method for class 'integer64' e1 & e2 ## S3 method for class 'integer64' e1 | e2 ## S3 method for class 'integer64' xor(x, y)
binattr(e1, e2) ## S3 method for class 'integer64' e1 + e2 ## S3 method for class 'integer64' e1 - e2 ## S3 method for class 'integer64' e1 %/% e2 ## S3 method for class 'integer64' e1 %% e2 ## S3 method for class 'integer64' e1 * e2 ## S3 method for class 'integer64' e1 ^ e2 ## S3 method for class 'integer64' e1 / e2 ## S3 method for class 'integer64' e1 == e2 ## S3 method for class 'integer64' e1 != e2 ## S3 method for class 'integer64' e1 < e2 ## S3 method for class 'integer64' e1 <= e2 ## S3 method for class 'integer64' e1 > e2 ## S3 method for class 'integer64' e1 >= e2 ## S3 method for class 'integer64' e1 & e2 ## S3 method for class 'integer64' e1 | e2 ## S3 method for class 'integer64' xor(x, y)
e1 |
an atomic vector of class 'integer64' |
e2 |
an atomic vector of class 'integer64' |
x |
an atomic vector of class 'integer64' |
y |
an atomic vector of class 'integer64' |
&
, |
, xor()
, !=
, ==
,
<
, <=
, >
, >=
return a logical vector
^
and /
return a double vector
+
, -
, *
, %/%
, %%
return a vector of class 'integer64'
format.integer64()
integer64()
as.integer64(1:12) - 1 options(integer64_semantics="new") d <- 2.5 i <- as.integer64(5) d/i # new 0.5 d*i # new 13 i*d # new 13 options(integer64_semantics="old") d/i # old: 0.4 d*i # old: 10 i*d # old: 13
as.integer64(1:12) - 1 options(integer64_semantics="new") d <- 2.5 i <- as.integer64(5) d/i # new 0.5 d*i # new 13 i*d # new 13 options(integer64_semantics="old") d/i # old: 0.4 d*i # old: 10 i*d # old: 13