Package 'bit64'

Title: A S3 Class for Vectors of 64bit Integers
Description: Package 'bit64' provides serializable S3 atomic 64bit (signed) integers. These are useful for handling database keys and exact counting in +-2^63. WARNING: do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double, e.g. integer64 + double => integer64. Class integer64 can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as 'match' and 'order' support inter- active data exploration and manipulation and optionally leverage caching.
Authors: Michael Chirico [aut, cre], Jens Oehlschlägel [aut], Leonardo Silvestri [ctb], Ofek Shilon [ctb]
Maintainer: Michael Chirico <[email protected]>
License: GPL-2 | GPL-3
Version: 4.5.99
Built: 2024-11-23 06:03:32 UTC
Source: https://github.com/r-lib/bit64

Help Index


Test if two integer64 vectors are all.equal

Description

A utility to compare integer64 objects 'x' and 'y' testing for ‘near equality’, see all.equal().

Usage

## S3 method for class 'integer64'
all.equal(
  target,
  current,
  tolerance = sqrt(.Machine$double.eps),
  scale = NULL,
  countEQ = FALSE,
  formatFUN = function(err, what) format(err),
  ...,
  check.attributes = TRUE
)

Arguments

target

a vector of 'integer64' or an object that can be coerced with as.integer64()

current

a vector of 'integer64' or an object that can be coerced with as.integer64()

tolerance

numeric > 0. Differences smaller than tolerance are not reported. The default value is close to 1.5e-8.

scale

NULL or numeric > 0, typically of length 1 or length(target). See Details.

countEQ

logical indicating if the target == current cases should be counted when computing the mean (absolute or relative) differences. The default, FALSE may seem misleading in cases where target and current only differ in a few places; see the extensive example.

formatFUN

a function() of two arguments, err, the relative, absolute or scaled error, and what, a character string indicating the kind of error; maybe used, e.g., to format relative and absolute errors differently.

...

further arguments are ignored

check.attributes

logical indicating if the attributes() of target and current (other than the names) should be compared.

Details

In all.equal.numeric() the type integer is treated as a proper subset of double i.e. does not complain about comparing integer with double. Following this logic all.equal.integer64 treats integer as a proper subset of integer64 and does not complain about comparing integer with integer64. double also compares without warning as long as the values are within lim.integer64(), if double are bigger all.equal.integer64 complains about the ⁠all.equal.integer64 overflow warning⁠. For further details see all.equal().

Value

Either ‘TRUE’ (‘NULL’ for ‘attr.all.equal’) or a vector of ‘mode’ ‘"character"’ describing the differences between ‘target’ and ‘current’.

Note

all.equal() only dispatches to this method if the first argument is integer64, calling all.equal() with a non-integer64 first and a integer64 second argument gives undefined behavior!

See Also

all.equal()

Examples

all.equal(as.integer64(1:10), as.integer64(0:9))
  all.equal(as.integer64(1:10), as.integer(1:10))
  all.equal(as.integer64(1:10), as.double(1:10))
  all.equal(as.integer64(1), as.double(1e300))

Coerce from integer64

Description

Methods to coerce integer64 to other atomic types. 'as.bitstring' coerces to a human-readable bit representation (strings of zeroes and ones). The methods format(), as.character(), as.double(), as.logical(), as.integer() do what you would expect.

Usage

as.bitstring(x, ...)

## S3 method for class 'integer64'
as.double(x, keep.names = FALSE, ...)

## S3 method for class 'integer64'
as.integer(x, ...)

## S3 method for class 'integer64'
as.logical(x, ...)

## S3 method for class 'integer64'
as.character(x, ...)

## S3 method for class 'integer64'
as.bitstring(x, ...)

## S3 method for class 'bitstring'
print(x, ...)

## S3 method for class 'integer64'
as.list(x, ...)

Arguments

x

an integer64 vector

...

further arguments to the NextMethod()

keep.names

FALSE, set to TRUE to keep a names vector

Value

as.bitstring returns a string of class 'bitstring'.

The other methods return atomic vectors of the expected types

See Also

as.integer64.character() integer64()

Examples

as.character(lim.integer64())
  as.bitstring(lim.integer64())
  as.bitstring(as.integer64(c(
   -2,-1,NA,0:2
  )))

integer64: Coercing to data.frame column

Description

Coercing integer64 vector to data.frame.

Usage

## S3 method for class 'integer64'
as.data.frame(x, ...)

Arguments

x

an integer64 vector

...

passed to NextMethod as.data.frame() after removing the 'integer64' class attribute

Details

'as.data.frame.integer64' is rather not intended to be called directly, but it is required to allow integer64 as data.frame columns.

Value

a one-column data.frame containing an integer64 vector

Note

This is currently very slow – any ideas for improvement?

See Also

cbind.integer64() integer64()

Examples

as.data.frame.integer64(as.integer64(1:12))
  data.frame(a=1:12, b=as.integer64(1:12))

Coerce to integer64

Description

Methods to coerce from other atomic types to integer64.

Usage

as.integer64(x, ...)

## S3 method for class ''NULL''
as.integer64(x, ...)

## S3 method for class 'integer64'
as.integer64(x, ...)

## S3 method for class 'double'
as.integer64(x, keep.names = FALSE, ...)

## S3 method for class 'integer'
as.integer64(x, ...)

## S3 method for class 'logical'
as.integer64(x, ...)

## S3 method for class 'character'
as.integer64(x, ...)

## S3 method for class 'factor'
as.integer64(x, ...)

## S3 method for class 'bitstring'
as.integer64(x, ...)

NA_integer64_

Arguments

x

an atomic vector

...

further arguments to the NextMethod()

keep.names

FALSE, set to TRUE to keep a names vector

Format

An object of class integer64 of length 1.

Details

as.integer64.character is realized using C function strtoll which does not support scientific notation. Instead of '1e6' use '1000000'. as.integer64.bitstring evaluates characters '0' and ' ' as zero-bit, all other one byte characters as one-bit, multi-byte characters are not allowed, strings shorter than 64 characters are treated as if they were left-padded with '0', strings longer than 64 bytes are mapped to NA_INTEGER64 and a warning is emitted.

Value

The other methods return atomic vectors of the expected types

See Also

as.character.integer64() integer64()

Examples

as.integer64(as.character(lim.integer64()))
as.integer64(
  structure(c("1111111111111111111111111111111111111111111111111111111111111110",
              "1111111111111111111111111111111111111111111111111111111111111111",
              "1000000000000000000000000000000000000000000000000000000000000000",
              "0000000000000000000000000000000000000000000000000000000000000000",
              "0000000000000000000000000000000000000000000000000000000000000001",
              "0000000000000000000000000000000000000000000000000000000000000010"
  ), class = "bitstring")
)
as.integer64(
 structure(c("............................................................... ",
             "................................................................",
             ".                                                               ",
             "",
             ".",
             "10"
  ), class = "bitstring")
)

Function for measuring algorithmic performance of high-level and low-level integer64 functions

Description

Function for measuring algorithmic performance of high-level and low-level integer64 functions

Usage

benchmark64(nsmall = 2L^16L, nbig = 2L^25L, timefun = repeat.time)

optimizer64(
  nsmall = 2L^16L,
  nbig = 2L^25L,
  timefun = repeat.time,
  what = c("match", "%in%", "duplicated", "unique", "unipos", "table", "rank",
    "quantile"),
  uniorder = c("original", "values", "any"),
  taborder = c("values", "counts"),
  plot = TRUE
)

Arguments

nsmall

size of smaller vector

nbig

size of larger bigger vector

timefun

a function for timing such as bit::repeat.time() or system.time()

what

a vector of names of high-level functions

uniorder

one of the order parameters that are allowed in unique.integer64() and unipos.integer64()

taborder

one of the order parameters that are allowed in table.integer64()

plot

set to FALSE to suppress plotting

Details

benchmark64 compares the following scenarios for the following use cases:

scenario name explanation
32-bit applying Base R function to 32-bit integer data
64-bit applying bit64 function to 64-bit integer data (with no cache)
hashcache ditto when cache contains hashmap(), see hashcache()
sortordercache ditto when cache contains sorting and ordering, see sortordercache()
ordercache ditto when cache contains ordering only, see ordercache()
allcache ditto when cache contains sorting, ordering and hashing
use case name explanation
cache filling the cache according to scenario
match(s,b) match small in big vector
s %in% b small %in% big vector
match(b,s) match big in small vector
b %in% s big %in% small vector
match(b,b) match big in (different) big vector
b %in% b big %in% (different) big vector
duplicated(b) duplicated of big vector
unique(b) unique of big vector
table(b) table of big vector
sort(b) sorting of big vector
order(b) ordering of big vector
rank(b) ranking of big vector
quantile(b) quantiles of big vector
summary(b) summary of of big vector
SESSION exemplary session involving multiple calls (including cache filling costs)

Note that the timings for the cached variants do not contain the time costs of building the cache, except for the timing of the exemplary user session, where the cache costs are included in order to evaluate amortization.

Value

benchmark64 returns a matrix with elapsed seconds, different high-level tasks in rows and different scenarios to solve the task in columns. The last row named 'SESSION' contains the elapsed seconds of the exemplary sesssion.

optimizer64 returns a dimensioned list with one row for each high-level function timed and two columns named after the values of the nsmall and nbig sample sizes. Each list cell contains a matrix with timings, low-level-methods in rows and three measurements c("prep","both","use") in columns. If it can be measured separately, prep contains the timing of preparatory work such as sorting and hashing, and use contains the timing of using the prepared work. If the function timed does both, preparation and use, the timing is in both.

Functions

  • benchmark64(): compares high-level integer64 functions against the integer functions from Base R

  • optimizer64(): compares for each high-level integer64 function the Base R integer function with several low-level integer64 functions with and without caching

See Also

integer64()

Examples

message("this small example using system.time does not give serious timings\n
this we do this only to run regression tests")
benchmark64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE))
optimizer64(nsmall=2^7, nbig=2^13, timefun=function(expr)system.time(expr, gcFirst=FALSE)
, plot=FALSE
)
## Not run: 
message("for real measurement of sufficiently large datasets run this on your machine")
benchmark64()
optimizer64()

## End(Not run)
message("let's look at the performance results on Core i7 Lenovo T410 with 8 GB RAM")
data(benchmark64.data)
print(benchmark64.data)

matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])
, pch=c("3", "6", "h", "s", "o", "a")
, xlab="tasks [last=session]"
, ylab="log2(relative speed) [bigger is better]"
)
matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]))
, type="b", axes=FALSE
, lwd=c(rep(1, 14), 3)
, xlab="context"
, ylab="log2(relative speed) [bigger is better]"
)
axis(1
, labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder")
, at=1:6
)
axis(2)
data(optimizer64.data)
print(optimizer64.data)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
par(cex=0.7)
for (i in 1:nrow(optimizer64.data)){
 for (j in 1:2){
   tim <- optimizer64.data[[i,j]]
  barplot(t(tim))
  if (rownames(optimizer64.data)[i]=="match")
   title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j]))
  else if (rownames(optimizer64.data)[i]=="%in%")
   title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j]))
  else
   title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j]))
 }
}
par(mfrow=c(1,1))

Results of performance measurement on a Core i7 Lenovo T410 8 GB RAM under Windows 7 64bit

Description

These are the results of calling benchmark64()

Usage

data(benchmark64.data)

Format

The format is:

num [1:16, 1:6] 2.55e-05 2.37 2.39 1.28 1.39 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:16] "cache" "match(s,b)" "s %in% b" "match(b,s)" ...
..$ : chr [1:6] "32-bit" "64-bit" "hashcache" "sortordercache" ...

Examples

data(benchmark64.data)
print(benchmark64.data)
matplot(log2(benchmark64.data[-1,1]/benchmark64.data[-1,])
, pch=c("3", "6", "h", "s", "o", "a")
, xlab="tasks [last=session]"
, ylab="log2(relative speed) [bigger is better]"
)
matplot(t(log2(benchmark64.data[-1,1]/benchmark64.data[-1,]))
, axes=FALSE
, type="b"
, lwd=c(rep(1, 14), 3)
, xlab="context"
, ylab="log2(relative speed) [bigger is better]"
)
axis(1
, labels=c("32-bit", "64-bit", "hash", "sortorder", "order", "hash+sortorder")
, at=1:6
)
axis(2)

Turning base R functions into S3 generics for bit64

Description

Turn those base functions S3 generic which are used in bit64

Usage

from:to
is.double(x)
match(x, table, ...)
x %in% table
rank(x, ...)
order(...)

## Default S3 method:
is.double(x)

## S3 method for class 'integer64'
is.double(x)

## S3 method for class 'integer64'
mtfrm(x)

## Default S3 method:
match(x, table, ...)

## Default S3 method:
x %in% table

## Default S3 method:
rank(x, ...)

## Default S3 method:
order(...)

Arguments

x

integer64 vector: the values to be matched, optionally carrying a cache created with hashcache()

table

integer64 vector: the values to be matched against, optionally carrying a cache created with hashcache() or sortordercache()

...

ignored

from

scalar denoting first element of sequence

to

scalar denoting last element of sequence

Details

The following functions are turned into S3 generics in order to dispatch methods for integer64():

Value

invisible()

Note

  • is.double() returns FALSE for integer64

  • : currently only dispatches at its first argument, thus as.integer64(1):9 works but 1:as.integer64(9) doesn't

  • match() currently only dispatches at its first argument and expects its second argument also to be integer64, otherwise throws an error. Beware of something like match(2, as.integer64(0:3))

  • %in% currently only dispatches at its first argument and expects its second argument also to be integer64, otherwise throws an error. Beware of something like 2 %in% as.integer64(0:3)

  • order() currently only orders a single argument, trying more than one raises an error

See Also

bit64(), S3

Examples

is.double(as.integer64(1))
    as.integer64(1):9
 match(as.integer64(2), as.integer64(0:3))
 as.integer64(2) %in% as.integer64(0:3)

 unique(as.integer64(c(1,1,2)))
 rank(as.integer64(c(1,1,2)))


 order(as.integer64(c(1,NA,2)))

Concatenating integer64 vectors

Description

The ususal functions 'c', 'cbind' and 'rbind'

Usage

## S3 method for class 'integer64'
c(..., recursive = FALSE)

## S3 method for class 'integer64'
cbind(...)

## S3 method for class 'integer64'
rbind(...)

Arguments

...

two or more arguments coerced to 'integer64' and passed to NextMethod()

recursive

logical. If recursive = TRUE, the function recursively descends through lists (and pairlists) combining all their elements into a vector.

Value

c() returns a integer64 vector of the total length of the input

cbind() and rbind() return a integer64 matrix

Note

R currently only dispatches generic 'c' to method 'c.integer64' if the first argument is 'integer64'

See Also

rep.integer64() seq.integer64() as.data.frame.integer64() integer64()

Examples

c(as.integer64(1), 2:6)
  cbind(1:6, as.integer(1:6))
  rbind(1:6, as.integer(1:6))

Atomic Caching

Description

Functions for caching results attached to atomic objects

Usage

newcache(x)

jamcache(x)

cache(x)

setcache(x, which, value)

getcache(x, which)

remcache(x)

## S3 method for class 'cache'
print(x, all.names = FALSE, pattern, ...)

Arguments

x

an integer64 vector (or a cache object in case of print.cache)

which

A character naming the object to be retrieved from the cache or to be stored in the cache

value

An object to be stored in the cache

all.names, pattern

passed to ls() when listing the cache content

...

ignored

Details

A cache is an environment attached to an atomic object with the attribute name 'cache'. It contains at least a reference to the atomic object that carries the cache. This is used when accessing the cache to detect whether the object carrying the cache has been modified meanwhile.

Value

See details

Functions

  • newcache(): creates a new cache referencing x

  • jamcache(): forces x to have a cache

  • cache(): returns the cache attached to x if it is not found to be outdated

  • setcache(): assigns a value into the cache of x

  • getcache(): gets cache value 'which' from x

  • remcache(): removes the cache from x

See Also

bit::still.identical() for testing whether to symbols point to the same RAM.

Functions that get and set small cache-content automatically when a cache is present: bit::na.count(), bit::nvalid(), bit::is.sorted(), bit::nunique() and bit::nties()

Setting big caches with a relevant memory footprint requires a conscious decision of the user: hashcache, sortcache, ordercache, sortordercache

Functions that use big caches: match.integer64(), %in%.integer64, duplicated.integer64(), unique.integer64(), unipos(), table.integer64(), keypos(), tiepos(), rank.integer64(), prank(), qtile(), quantile.integer64(), median.integer64(), and summary.integer64()

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  y <- x
  still.identical(x,y)
  y[1] <- NA
  still.identical(x,y)
  mycache <- newcache(x)
  ls(mycache)
  mycache
  rm(mycache)
  jamcache(x)
  cache(x)
  x[1] <- NA
  cache(x)
  getcache(x, "abc")
  setcache(x, "abc", 1)
  getcache(x, "abc")
  remcache(x)
  cache(x)

Cumulative Sums, Products, Extremes and lagged differences

Description

Cumulative Sums, Products, Extremes and lagged differences

Usage

## S3 method for class 'integer64'
diff(x, lag = 1L, differences = 1L, ...)

## S3 method for class 'integer64'
cummin(x)

## S3 method for class 'integer64'
cummax(x)

## S3 method for class 'integer64'
cumsum(x)

## S3 method for class 'integer64'
cumprod(x)

Arguments

x

an atomic vector of class 'integer64'

lag

see diff()

differences

see diff()

...

ignored

Value

cummin(), cummax() , cumsum() and cumprod() return a integer64 vector of the same length as their input

diff() returns a integer64 vector shorter by lag*differences elements

See Also

sum.integer64() integer64()

Examples

cumsum(rep(as.integer64(1), 12))
  diff(as.integer64(c(0,1:12)))
  cumsum(as.integer64(c(0, 1:12)))
  diff(cumsum(as.integer64(c(0,0,1:12))), differences=2)

Determine Duplicate Elements of integer64

Description

duplicated() determines which elements of a vector or data frame are duplicates of elements with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

## S3 method for class 'integer64'
duplicated(x, incomparables = FALSE, nunique = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up matching when x has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

Value

duplicated(): a logical vector of the same length as x.

See Also

duplicated(), unique.integer64()

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
duplicated(x)

stopifnot(identical(duplicated(x),  duplicated(as.integer(x))))

Extract or Replace Parts of an integer64 vector

Description

Methods to extract and replace parts of an integer64 vector.

Usage

## S3 method for class 'integer64'
x[i, ...]

## S3 replacement method for class 'integer64'
x[...] <- value

## S3 method for class 'integer64'
x[[...]]

## S3 replacement method for class 'integer64'
x[[...]] <- value

Arguments

x

an atomic vector

i

indices specifying elements to extract

...

further arguments to the NextMethod()

value

an atomic vector with values to be assigned

Value

A vector or scalar of class 'integer64'

Note

You should not subscript non-existing elements and not use NAs as subscripts. The current implementation returns 9218868437227407266 instead of NA.

See Also

[ integer64()

Examples

as.integer64(1:12)[1:3]
  x <- as.integer64(1:12)
  dim(x) <- c(3,4)
  x
  x[]
  x[,2:3]

Unary operators and functions for integer64 vectors

Description

Unary operators and functions for integer64 vectors.

Usage

## S3 method for class 'integer64'
format(x, justify = "right", ...)

## S3 method for class 'integer64'
sign(x)

## S3 method for class 'integer64'
abs(x)

## S3 method for class 'integer64'
sqrt(x)

## S3 method for class 'integer64'
log(x, base = NULL)

## S3 method for class 'integer64'
log10(x)

## S3 method for class 'integer64'
log2(x)

## S3 method for class 'integer64'
trunc(x, ...)

## S3 method for class 'integer64'
floor(x)

## S3 method for class 'integer64'
ceiling(x)

## S3 method for class 'integer64'
signif(x, digits = 6L)

## S3 method for class 'integer64'
scale(x, center = TRUE, scale = TRUE)

## S3 method for class 'integer64'
round(x, digits = 0L)

## S3 method for class 'integer64'
is.na(x)

## S3 method for class 'integer64'
is.finite(x)

## S3 method for class 'integer64'
is.infinite(x)

## S3 method for class 'integer64'
is.nan(x)

## S3 method for class 'integer64'
!x

Arguments

x

an atomic vector of class 'integer64'

justify

should it be right-justified (the default), left-justified, centred or left alone.

...

further arguments to the NextMethod()

base

an atomic scalar (we save 50% log-calls by not allowing a vector base)

digits

integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed (see round())

center

see scale()

scale

see scale()

Value

format() returns a character vector

is.na() and ! return a logical vector

sqrt(), log(), log2() and log10() return a double vector

sign(), abs(), floor(), ceiling(), trunc() and round() return a vector of class 'integer64'

signif() is not implemented

See Also

xor.integer64() integer64()

Examples

sqrt(as.integer64(1:12))

Big caching of hashing, sorting, ordering

Description

Functions to create cache that accelerates many operations

Usage

hashcache(x, nunique = NULL, ...)

sortcache(x, has.na = NULL)

sortordercache(x, has.na = NULL, stable = NULL)

ordercache(x, has.na = NULL, stable = NULL, optimize = "time")

Arguments

x

an atomic vector (note that currently only integer64 is supported)

nunique

giving correct number of unique elements can help reducing the size of the hashmap

...

passed to hashmap()

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE.

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed.

Details

The result of relative expensive operations hashmap(), bit::ramsort(), bit::ramsortorder(), and bit::ramorder() can be stored in a cache in order to avoid multiple excutions. Unless in very specific situations, the recommended method is hashsortorder only.

Value

x with a cache() that contains the result of the expensive operations, possible together with small derived information (such as nunique.integer64()) and previously cached results.

Note

Note that we consider storing the big results from sorting and/or ordering as a relevant side-effect, and therefore storing them in the cache should require a conscious decision of the user.

See Also

cache() for caching functions and nunique.integer64() for methods benefiting from small caches

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  sortordercache(x)

Hashing for 64bit integers

Description

This is an explicit implementation of hash functionality that underlies matching and other functions in R. Explicit means that you can create, store and use hash functionality directly. One advantage is that you can re-use hashmaps, which avoid re-building hashmaps again and again.

Usage

hashfun(x, ...)

## S3 method for class 'integer64'
hashfun(x, minfac = 1.41, hashbits = NULL, ...)

hashmap(x, ...)

## S3 method for class 'integer64'
hashmap(x, nunique = NULL, minfac = 1.41, hashbits = NULL, cache = NULL, ...)

hashpos(cache, ...)

## S3 method for class 'cache_integer64'
hashpos(cache, x, nomatch = NA_integer_, ...)

hashrev(cache, ...)

## S3 method for class 'cache_integer64'
hashrev(cache, x, nomatch = NA_integer_, ...)

hashfin(cache, ...)

## S3 method for class 'cache_integer64'
hashfin(cache, x, ...)

hashrin(cache, ...)

## S3 method for class 'cache_integer64'
hashrin(cache, x, ...)

hashdup(cache, ...)

## S3 method for class 'cache_integer64'
hashdup(cache, ...)

hashuni(cache, ...)

## S3 method for class 'cache_integer64'
hashuni(cache, keep.order = FALSE, ...)

hashupo(cache, ...)

## S3 method for class 'cache_integer64'
hashupo(cache, keep.order = FALSE, ...)

hashtab(cache, ...)

## S3 method for class 'cache_integer64'
hashtab(cache, ...)

hashmaptab(x, ...)

## S3 method for class 'integer64'
hashmaptab(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...)

hashmapuni(x, ...)

## S3 method for class 'integer64'
hashmapuni(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...)

hashmapupo(x, ...)

## S3 method for class 'integer64'
hashmapupo(x, nunique = NULL, minfac = 1.5, hashbits = NULL, ...)

Arguments

x

an integer64 vector

...

further arguments, passed from generics, ignored in methods

minfac

minimum factor by which the hasmap has more elements compared to the data x, ignored if hashbits is given directly

hashbits

length of hashmap is 2^hashbits

nunique

giving correct number of unique elements can help reducing the size of the hashmap

cache

an optional cache() object into which to put the hashmap (by default a new cache is created

nomatch

the value to be returned if an element is not found in the hashmap

keep.order

determines order of results and speed: FALSE (the default) is faster and returns in the (pseudo)random order of the hash function, TRUE returns in the order of first appearance in the original data, but this requires extra work

Details

function see also description
hashfun digest export of the hash function used in hashmap
hashmap match() return hashmap
hashpos match() return positions of x in hashmap
hashrev match() return positions of hashmap in x
hashfin %in%.integer64 return logical whether x is in hashmap
hashrin %in%.integer64 return logical whether hashmap is in x
hashdup duplicated() return logical whether hashdat is duplicated using hashmap
hashuni unique() return unique values of hashmap
hashmapuni unique() return unique values of x
hashupo unique() return positions of unique values in hashdat
hashmapupo unique() return positions of unique values in x
hashtab table() tabulate values of hashdat using hashmap in keep.order=FALSE
hashmaptab table() tabulate values of x building hasmap on the fly in keep.order=FALSE

Value

See Details

See Also

match(), runif64()

Examples

x <- as.integer64(sample(c(NA, 0:9)))
y <- as.integer64(sample(c(NA, 1:9), 10, TRUE))
hashfun(y)
hx <- hashmap(x)
hy <- hashmap(y)
ls(hy)
hashpos(hy, x)
hashrev(hx, y)
hashfin(hy, x)
hashrin(hx, y)
hashdup(hy)
hashuni(hy)
hashuni(hy, keep.order=TRUE)
hashmapuni(y)
hashupo(hy)
hashupo(hy, keep.order=TRUE)
hashmapupo(y)
hashtab(hy)
hashmaptab(y)

stopifnot(identical(match(as.integer(x),as.integer(y)),hashpos(hy, x)))
stopifnot(identical(match(as.integer(x),as.integer(y)),hashrev(hx, y)))
stopifnot(identical(as.integer(x) %in% as.integer(y), hashfin(hy, x)))
stopifnot(identical(as.integer(x) %in% as.integer(y), hashrin(hx, y)))
stopifnot(identical(duplicated(as.integer(y)), hashdup(hy)))
stopifnot(identical(as.integer64(unique(as.integer(y))), hashuni(hy, keep.order=TRUE)))
stopifnot(identical(sort(hashuni(hy, keep.order=FALSE)), sort(hashuni(hy, keep.order=TRUE))))
stopifnot(identical(y[hashupo(hy, keep.order=FALSE)], hashuni(hy, keep.order=FALSE)))
stopifnot(identical(y[hashupo(hy, keep.order=TRUE)], hashuni(hy, keep.order=TRUE)))
stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=TRUE)), hashupo(hy, keep.order=TRUE)))
stopifnot(identical(hashpos(hy, hashuni(hy, keep.order=FALSE)), hashupo(hy, keep.order=FALSE)))
stopifnot(identical(hashuni(hy, keep.order=FALSE), hashtab(hy)$values))
stopifnot(identical(as.vector(table(as.integer(y), useNA="ifany"))
, hashtab(hy)$counts[order.integer64(hashtab(hy)$values)]))
stopifnot(identical(hashuni(hy, keep.order=TRUE), hashmapuni(y)))
stopifnot(identical(hashupo(hy, keep.order=TRUE), hashmapupo(y)))
stopifnot(identical(hashtab(hy), hashmaptab(y)))

    ## Not run: 
    message("explore speed given size of the hasmap in 2^hashbits and size of the data")
    message("more hashbits means more random access and less collisions")
    message("i.e. more data means less random access and more collisions")
    bits <- 24
    b <- seq(-1, 0, 0.1)
    tim <- matrix(NA, length(b), 2, dimnames=list(b, c("bits","bits+1")))
    for (i in 1:length(b)){
      n <- as.integer(2^(bits+b[i]))
      x <- as.integer64(sample(n))
      tim[i,1] <- repeat.time(hashmap(x, hashbits=bits))[3]
      tim[i,2] <- repeat.time(hashmap(x, hashbits=bits+1))[3]
      print(tim)
      matplot(b, tim)
    }
    message("we conclude that n*sqrt(2) is enough to avoid collisions")
    
## End(Not run)

Identity function for class 'integer64'

Description

This will discover any deviation between objects containing integer64 vectors.

Usage

identical.integer64(
  x,
  y,
  num.eq = FALSE,
  single.NA = FALSE,
  attrib.as.set = TRUE,
  ignore.bytecode = TRUE,
  ignore.environment = FALSE,
  ignore.srcref = TRUE,
  ...
)

Arguments

x, y

Atomic vector of class 'integer64'

num.eq, single.NA, attrib.as.set, ignore.bytecode, ignore.environment, ignore.srcref

See identical().

...

Passed on to identical(). Only ⁠extptr.as.ref=⁠ is available as of R 4.4.1, and then only for versions of R >= 4.2.0.

Details

This is simply a wrapper to identical() with default arguments ⁠num.eq = FALSE, single.NA = FALSE⁠.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

See Also

==.integer64 identical() integer64()

Examples

i64 <- as.double(NA); class(i64) <- "integer64"
  identical(i64-1, i64+1)
  identical.integer64(i64-1, i64+1)

Small cache access methods

Description

These methods are packaged here for methods in packages bit64 and ff.

Usage

## S3 method for class 'integer64'
na.count(x, ...)

## S3 method for class 'integer64'
nvalid(x, ...)

## S3 method for class 'integer64'
is.sorted(x, ...)

## S3 method for class 'integer64'
nunique(x, ...)

## S3 method for class 'integer64'
nties(x, ...)

Arguments

x

some object

...

ignored

Details

All these functions benefit from a sortcache(), ordercache() or sortordercache(). na.count(), nvalid() and nunique() also benefit from a hashcache().

Value

is.sorted returns a logical scalar, the other methods return an integer scalar.

Functions

  • na.count(integer64): returns the number of NAs

  • nvalid(integer64): returns the number of valid data points, usually length() minus na.count.

  • is.sorted(integer64): checks for sortedness of x (NAs sorted first)

  • nunique(integer64): returns the number of unique values

  • nties(integer64): returns the number of tied values.

Note

If a cache() exists but the desired value is not cached, then these functions will store their result in the cache. We do not consider this a relevant side-effect, since these small cache results do not have a relevant memory footprint.

See Also

cache() for caching functions and sortordercache() for functions creating big caches

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
 length(x)
 na.count(x)
 nvalid(x)
 nunique(x)
 nties(x)
 table.integer64(x)
 x

Extract Positions in redundant dimension table

Description

keypos returns the positions of the (fact table) elements that participate in their sorted unique subset (dimension table)

Usage

keypos(x, ...)

## S3 method for class 'integer64'
keypos(x, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

...

ignored

method

NULL for automatic method selection or a suitable low-level method, see details

Details

NAs are sorted first in the dimension table, see ramorder.integer64().

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

Value

an integer vector of the same length as x containing positions relative to sort(unique(x), na.last=FALSE)

See Also

unique.integer64() for the unique subset and match.integer64() for finding positions in a different vector.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
keypos(x)

stopifnot(identical(keypos(x),  match.integer64(x, sort(unique(x), na.last=FALSE))))

64-bit integer matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second. %in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if there is a match or not for its left operand.

Usage

## S3 method for class 'integer64'
match(x, table, nomatch = NA_integer_, nunique = NULL, method = NULL, ...)

## S3 method for class 'integer64'
x %in% table, ...

Arguments

x

integer64 vector: the values to be matched, optionally carrying a cache created with hashcache()

table

integer64 vector: the values to be matched against, optionally carrying a cache created with hashcache() or sortordercache()

nomatch

the value to be returned in the case when no match is found. Note that it is coerced to integer.

nunique

NULL or the number of unique values of table (including NA). Providing nunique can speed-up matching when table has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

These functions automatically choose from several low-level functions considering the size of x and table and the availability of caches.

Suitable methods for ⁠%in%.integer64⁠ are

Suitable methods for match.integer64 are

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match, otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x: thus the values are TRUE or FALSE and never NA.

See Also

match()

Examples

x <- as.integer64(c(NA, 0:9), 32)
table <- as.integer64(c(1:9, NA))
match.integer64(x, table)
"%in%.integer64"(x, table)

x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE))
table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table))))
stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table)))

## Not run: 
    message("check when reverse hash-lookup beats standard hash-lookup")
    e <- 4:24
    timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e))
    for (iy in seq_along(e))
    for (ix in 1:iy){
        nx <- 2^e[ix]
        ny <- 2^e[iy]
        x <- as.integer64(sample(ny, nx, FALSE))
        y <- as.integer64(sample(ny, ny, FALSE))
        #hashfun(x, bits=as.integer(5))
        timx[ix,iy] <- repeat.time({
        hx <- hashmap(x)
        py <- hashrev(hx, y)
        })[3]
        timy[ix,iy] <- repeat.time({
        hy <- hashmap(y)
        px <- hashpos(hy, x)
        })[3]
        #identical(px, py)
        print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="")
    }

    message("explore best low-level method given size of x and table")
    B1 <- 1:27
    B2 <- 1:27
    tim <- array(NA, dim=c(length(B1), length(B2), 5)
 , dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3")))
    for (i1 in B1)
    for (i2 in B2)
    {
      b1 <- B1[i1]
      b2 <- B1[i2]
      n1 <- 2^b1
      n2 <- 2^b2
      x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA))
      x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA))
      tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3]
      tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3]
      s <- clone(x2); o <- seq_along(s); ramsortorder(s, o)
      tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3]
      tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3]
      tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3]
      rm(s,o)
      print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti)))
    }

## End(Not run)

Working with integer64 arrays and matrices

Description

These functions and methods facilitate working with integer64 objects stored in matrices. As ever, the primary motivation for having tailor-made functions here is that R's methods often receive input from bit64 and treat the vectors as doubles, leading to unexpected and/or incorrect results.

Usage

colSums(x, na.rm = FALSE, dims = 1L)

## Default S3 method:
colSums(x, na.rm = FALSE, dims = 1L)

## S3 method for class 'integer64'
colSums(x, na.rm = FALSE, dims = 1L)

rowSums(x, na.rm = FALSE, dims = 1L)

## Default S3 method:
rowSums(x, na.rm = FALSE, dims = 1L)

## S3 method for class 'integer64'
rowSums(x, na.rm = FALSE, dims = 1L)

## S3 method for class 'integer64'
aperm(a, perm, ...)

Arguments

x

An array of integer64 numbers.

na.rm, dims

Same interpretation as in colSums().

a, perm

Passed on to aperm().

...

Passed on to subsequent methods.

Details

As of now, the colSums() and rowSums() methods are implemented as wrappers around equivalent apply() approaches, because re-using the default routine (and then applying integer64 to the result) does not work for objects with missing elements. Ideally this would eventually get its own dedicated C routine mimicking that of colSums() for integers; feature requests and PRs welcome.

aperm() is required for apply() to work, in general, otherwise FUN gets applied to a class-stripped version of the input.

Examples

A = as.integer64(1:6)
dim(A) = 3:2

colSums(A)
rowSums(A)
aperm(A, 2:1)

Results of performance measurement on a Core i7 Lenovo T410 8 GB RAM under Windows 7 64bit

Description

These are the results of calling optimizer64()

Usage

data(optimizer64.data)

Format

The format is:

List of 16
 $ : num [1:9, 1:3] 0 0 1.63 0.00114 2.44 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:10, 1:3] 0 0 0 1.62 0.00114 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:10, 1:3] 0 0 0.00105 0.00313 0.00313 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:15, 1:3] 0 0 0 0.00104 0.00104 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:14, 1:3] 0 0 0 0.000992 0.000992 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:13, 1:3] 0 0 0 0 0.000419 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:7, 1:3] 0 0 0 0.00236 0.00714 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:6, 1:3] 0 0 0.00189 0.00714 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:9, 1:3] 0 0 0.00105 1.17 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:9] "match" "match.64" "hashpos" "hashrev" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:10, 1:3] 0 0 0 0.00104 1.18 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:10] "%in%" "match.64" "%in%.64" "hashfin" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:10, 1:3] 0 0 1.64 2.48 2.48 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:10] "duplicated" "duplicated.64" "hashdup" "sortorderdup1" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:15, 1:3] 0 0 0 1.64 1.64 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:15] "unique" "unique.64" "hashmapuni" "hashuni" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:14, 1:3] 0 0 0 1.62 1.62 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:14] "unique" "unipos.64" "hashmapupo" "hashupo" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:13, 1:3] 0 0 0 0 0.32 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:13] "tabulate" "table" "table.64" "hashmaptab" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:7, 1:3] 0 0 0 2.96 10.69 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:7] "rank" "rank.keep" "rank.64" "sortorderrnk" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 $ : num [1:6, 1:3] 0 0 1.62 10.61 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:6] "quantile" "quantile.64" "sortqtl" "orderqtl" ...
  .. ..$ : chr [1:3] "prep" "both" "use"
 - attr(*, "dim")= int [1:2] 8 2
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:8] "match" "%in%" "duplicated" "unique" ...
  ..$ : chr [1:2] "65536" "33554432"

Examples

data(optimizer64.data)
print(optimizer64.data)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
par(cex=0.7)
for (i in 1:nrow(optimizer64.data)){
 for (j in 1:2){
   tim <- optimizer64.data[[i,j]]
  barplot(t(tim))
  if (rownames(optimizer64.data)[i]=="match")
   title(paste("match", colnames(optimizer64.data)[j], "in", colnames(optimizer64.data)[3-j]))
  else if (rownames(optimizer64.data)[i]=="%in%")
   title(paste(colnames(optimizer64.data)[j], "%in%", colnames(optimizer64.data)[3-j]))
  else
   title(paste(rownames(optimizer64.data)[i], colnames(optimizer64.data)[j]))
 }
}
par(mfrow=c(1,1))

(P)ercent (Rank)s

Description

Function prank.integer64 projects the values ⁠[min..max]⁠ via ranks ⁠[1..n]⁠ to ⁠[0..1]⁠. qtile.integer64() is the inverse function of 'prank.integer64' and projects ⁠[0..1]⁠ to ⁠[min..max]⁠.

Usage

prank(x, ...)

## S3 method for class 'integer64'
prank(x, method = NULL, ...)

Arguments

x

a integer64 vector

...

ignored

method

NULL for automatic method selection or a suitable low-level method, see details

Details

Function prank.integer64 is based on rank.integer64().

Value

prank returns a numeric vector of the same length as x.

See Also

rank.integer64() for simple ranks and qtile() for the inverse function quantiles.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
prank(x)

x <- x[!is.na(x)]
stopifnot(identical(x,  unname(qtile(x, probs=prank(x)))))

(Q)uan(Tile)s

Description

Function prank.integer64() projects the values ⁠[min..max]⁠ via ranks ⁠[1..n]⁠ to ⁠[0..1]⁠.

Usage

qtile(x, probs = seq(0, 1, 0.25), ...)

## S3 method for class 'integer64'
qtile(x, probs = seq(0, 1, 0.25), names = TRUE, method = NULL, ...)

## S3 method for class 'integer64'
quantile(
  x,
  probs = seq(0, 1, 0.25),
  na.rm = FALSE,
  names = TRUE,
  type = 0L,
  ...
)

## S3 method for class 'integer64'
median(x, na.rm = FALSE, ...)

## S3 method for class 'integer64'
mean(x, na.rm = FALSE, ...)

## S3 method for class 'integer64'
summary(object, ...)

Arguments

x

a integer64 vector

probs

numeric vector of probabilities with values in ⁠[0,1]⁠ - possibly containing NAs

...

ignored

names

logical; if TRUE, the result has a names attribute. Set to FALSE for speedup with many probs.

method

NULL for automatic method selection or a suitable low-level method, see details

na.rm

logical; if TRUE, any NA and NaN's are removed from x before the quantiles are computed.

type

an integer selecting the quantile algorithm, currently only 0 is supported, see details

object

a integer64 vector

Details

qtile.ineger64 is the inverse function of 'prank.integer64' and projects ⁠[0..1]⁠ to ⁠[min..max]⁠.

Functions quantile.integer64 with type=0 and median.integer64 are convenience wrappers to qtile.

Function qtile behaves very similar to quantile.default with type=1 in that it only returns existing values, it is mostly symmetric but it is using 'round' rather than 'floor'.

Note that this implies that median.integer64 does not interpolate for even number of values (interpolation would create values that could not be represented as 64-bit integers).

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

Value

prank returns a numeric vector of the same length as x.

qtile returns a vector with elements from x at the relative positions specified by probs.

See Also

rank.integer64() for simple ranks and quantile() for quantiles.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
qtile(x, probs=seq(0, 1, 0.25))
quantile(x, probs=seq(0, 1, 0.25), na.rm=TRUE)
median(x, na.rm=TRUE)
summary(x)

x <- x[!is.na(x)]
stopifnot(identical(x,  unname(qtile(x, probs=prank(x)))))

Low-level intger64 methods for in-RAM sorting and ordering

Description

Fast low-level methods for sorting and ordering. The ..sortorder methods do sorting and ordering at once, which requires more RAM than ordering but is (almost) as fast as as sorting.

Usage

## S3 method for class 'integer64'
shellsort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
shellsortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
shellorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
mergesort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
mergeorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
mergesortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)

## S3 method for class 'integer64'
quicksort(
  x,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  restlevel = floor(1.5 * log2(length(x))),
  ...
)

## S3 method for class 'integer64'
quicksortorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  restlevel = floor(1.5 * log2(length(x))),
  ...
)

## S3 method for class 'integer64'
quickorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  restlevel = floor(1.5 * log2(length(x))),
  ...
)

## S3 method for class 'integer64'
radixsort(
  x,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  radixbits = 8L,
  ...
)

## S3 method for class 'integer64'
radixsortorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  radixbits = 8L,
  ...
)

## S3 method for class 'integer64'
radixorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  radixbits = 8L,
  ...
)

## S3 method for class 'integer64'
ramsort(
  x,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  stable = TRUE,
  optimize = c("time", "memory"),
  VERBOSE = FALSE,
  ...
)

## S3 method for class 'integer64'
ramsortorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  stable = TRUE,
  optimize = c("time", "memory"),
  VERBOSE = FALSE,
  ...
)

## S3 method for class 'integer64'
ramorder(
  x,
  i,
  has.na = TRUE,
  na.last = FALSE,
  decreasing = FALSE,
  stable = TRUE,
  optimize = c("time", "memory"),
  VERBOSE = FALSE,
  ...
)

Arguments

x

a vector to be sorted by ramsort.integer64() and ramsortorder.integer64(), i.e. the output of sort.integer64()

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE

na.last

boolean scalar telling ramsort whether to sort NAs last or first. Note that 'boolean' means that there is no third option NA as in sort()

decreasing

boolean scalar telling ramsort whether to sort increasing or decreasing

...

further arguments, passed from generics, ignored in methods

i

integer positions to be modified by ramorder.integer64() and ramsortorder.integer64(), default is 1:n, in this case the output is similar to order.integer64()

restlevel

number of remaining recursionlevels before quicksort switches from recursing to shellsort

radixbits

size of radix in bits

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed

VERBOSE

cat some info about chosen method

Details

See bit::ramsort()

Value

These functions return the number of NAs found or assumed during sorting

Note

Note that these methods purposely violate the functional programming paradigm: they are called for the side-effect of changing some of their arguments. The sort-methods change x, the order-methods change i, and the sortoder-methods change both x and i

See Also

bit::ramsort() for the generic, ramsort.default for the methods provided by package ff, sort.integer64() for the sort interface and sortcache() for caching the work of sorting

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  x
  message("ramsort example")
  s <- clone(x)
  ramsort(s)
  message("s has been changed in-place - whether or not ramsort uses an in-place algorithm")
  s
  message("ramorder example")
  s <- clone(x)
  o <- seq_along(s)
  ramorder(s, o)
  message("o has been changed in-place - s remains unchanged")
  s
  o
  s[o]
  message("ramsortorder example")
  o <- seq_along(s)
  ramsortorder(s, o)
  message("s and o have both been changed in-place - this is much faster")
  s
  o

Sample Ranks from integer64

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) are averaged and missing values propagated.

Usage

## S3 method for class 'integer64'
rank(x, method = NULL, ...)

Arguments

x

a integer64 vector

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache. Suitable methods are

Value

A numeric vector of the same length as x.

See Also

order.integer64(), rank() and prank() for percent rank.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
rank.integer64(x)

stopifnot(identical(rank.integer64(x),  rank(as.integer(x)
, na.last="keep", ties.method = "average")))

Replicate elements of integer64 vectors

Description

Replicate elements of integer64 vectors

Arguments

x

a vector of 'integer64' to be replicated

...

further arguments passed to NextMethod()

Value

rep() returns a integer64 vector

See Also

c.integer64() rep.integer64() as.data.frame.integer64() integer64()

Examples

rep(as.integer64(1:2), 6)
  rep(as.integer64(1:2), c(6,6))
  rep(as.integer64(1:2), length.out=6)

integer64: random numbers

Description

Create uniform random 64-bit integers within defined range

Usage

runif64(
  n,
  min = lim.integer64()[1L],
  max = lim.integer64()[2L],
  replace = TRUE
)

Arguments

n

length of return vector

min

lower inclusive bound for random numbers

max

upper inclusive bound for random numbers

replace

set to FALSE for sampleing from a finite pool, see sample()

Details

For each random integer we call R's internal C interface unif_rand() twice. Each call is mapped to 2^32 unsigned integers. The two 32-bit patterns are concatenated to form the new integer64. This process is repeated until the result is not a NA_INTEGER64_.

Value

a integer64 vector

See Also

runif(), hashfun()

Examples

runif64(12)
  runif64(12, -16, 16)
  runif64(12, 0, as.integer64(2^60)-1)  # not 2^60-1 !
  var(runif(1e4))
  var(as.double(runif64(1e4, 0, 2^40))/2^40)  # ~ = 1/12 = .08333

  table(sample(16, replace=FALSE))
  table(runif64(16, 1, 16, replace=FALSE))
  table(sample(16, replace=TRUE))
  table(runif64(16, 1, 16, replace=TRUE))

integer64: Sequence Generation

Description

Generating sequence of integer64 values

Arguments

from

integer64 scalar (in order to dispatch the integer64 method of seq()

to

scalar

by

scalar

length.out

scalar

along.with

scalar

...

ignored

Details

seq.integer64 does coerce its arguments 'from', 'to' and 'by' to integer64. If not provided, the argument 'by' is automatically determined as +1 or -1, but the size of 'by' is not calculated as in seq() (because this might result in a non-integer value).

Value

an integer64 vector with the generated sequence

Note

In base R : currently is not generic and does not dispatch, see section "Limitations inherited from Base R" in integer64()

See Also

c.integer64() rep.integer64() as.data.frame.integer64() integer64()

Examples

# colon not activated: as.integer64(1):12
  seq(as.integer64(1), 12, 2)
  seq(as.integer64(1), by=2, length.out=6)

High-level intger64 methods for sorting and ordering

Description

Fast high-level methods for sorting and ordering. These are wrappers to ramsort.integer64() and friends and do not modify their arguments.

Usage

## S3 method for class 'integer64'
sort(
  x,
  decreasing = FALSE,
  has.na = TRUE,
  na.last = TRUE,
  stable = TRUE,
  optimize = c("time", "memory"),
  VERBOSE = FALSE,
  ...
)

## S3 method for class 'integer64'
order(
  ...,
  na.last = TRUE,
  decreasing = FALSE,
  has.na = TRUE,
  stable = TRUE,
  optimize = c("time", "memory"),
  VERBOSE = FALSE
)

Arguments

x

a vector to be sorted by ramsort.integer64() and ramsortorder.integer64(), i.e. the output of sort.integer64()

decreasing

boolean scalar telling ramsort whether to sort increasing or decreasing

has.na

boolean scalar defining whether the input vector might contain NAs. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpected NAs with has.na=FALSE

na.last

boolean scalar telling ramsort whether to sort NAs last or first. Note that 'boolean' means that there is no third option NA as in sort()

stable

boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.

optimize

by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed

VERBOSE

cat some info about chosen method

...

further arguments, passed from generics, ignored in methods

Details

see sort() and order()

Value

sort returns the sorted vector and vector returns the order positions.

See Also

sort(), sortcache()

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
  x
  sort(x)
  message("the following has default optimize='time' which is faster but requires more RAM
, this calls 'ramorder'")
  order.integer64(x)
  message("slower with less RAM, this calls 'ramsortorder'")
  order.integer64(x, optimize="memory")

Searching and other uses of sorting for 64bit integers

Description

This is roughly an implementation of hash functionality but based on sorting instead on a hashmap. Since sorting is more informative than hashing we can do some more interesting things.

Usage

sortnut(sorted, ...)

## S3 method for class 'integer64'
sortnut(sorted, ...)

ordernut(table, order, ...)

## S3 method for class 'integer64'
ordernut(table, order, ...)

sortfin(sorted, x, ...)

## S3 method for class 'integer64'
sortfin(sorted, x, method = NULL, ...)

orderfin(table, order, x, ...)

## S3 method for class 'integer64'
orderfin(table, order, x, method = NULL, ...)

orderpos(table, order, x, ...)

## S3 method for class 'integer64'
orderpos(table, order, x, nomatch = NA, method = NULL, ...)

sortorderpos(sorted, order, x, ...)

## S3 method for class 'integer64'
sortorderpos(sorted, order, x, nomatch = NA, method = NULL, ...)

orderdup(table, order, ...)

## S3 method for class 'integer64'
orderdup(table, order, method = NULL, ...)

sortorderdup(sorted, order, ...)

## S3 method for class 'integer64'
sortorderdup(sorted, order, method = NULL, ...)

sortuni(sorted, nunique, ...)

## S3 method for class 'integer64'
sortuni(sorted, nunique, ...)

orderuni(table, order, nunique, ...)

## S3 method for class 'integer64'
orderuni(table, order, nunique, keep.order = FALSE, ...)

sortorderuni(table, sorted, order, nunique, ...)

## S3 method for class 'integer64'
sortorderuni(table, sorted, order, nunique, ...)

orderupo(table, order, nunique, ...)

## S3 method for class 'integer64'
orderupo(table, order, nunique, keep.order = FALSE, ...)

sortorderupo(sorted, order, nunique, keep.order = FALSE, ...)

## S3 method for class 'integer64'
sortorderupo(sorted, order, nunique, keep.order = FALSE, ...)

ordertie(table, order, nties, ...)

## S3 method for class 'integer64'
ordertie(table, order, nties, ...)

sortordertie(sorted, order, nties, ...)

## S3 method for class 'integer64'
sortordertie(sorted, order, nties, ...)

sorttab(sorted, nunique, ...)

## S3 method for class 'integer64'
sorttab(sorted, nunique, ...)

ordertab(table, order, nunique, ...)

## S3 method for class 'integer64'
ordertab(table, order, nunique, denormalize = FALSE, keep.order = FALSE, ...)

sortordertab(sorted, order, ...)

## S3 method for class 'integer64'
sortordertab(sorted, order, denormalize = FALSE, ...)

orderkey(table, order, na.skip.num = 0L, ...)

## S3 method for class 'integer64'
orderkey(table, order, na.skip.num = 0L, ...)

sortorderkey(sorted, order, na.skip.num = 0L, ...)

## S3 method for class 'integer64'
sortorderkey(sorted, order, na.skip.num = 0L, ...)

orderrnk(table, order, na.count, ...)

## S3 method for class 'integer64'
orderrnk(table, order, na.count, ...)

sortorderrnk(sorted, order, na.count, ...)

## S3 method for class 'integer64'
sortorderrnk(sorted, order, na.count, ...)

sortqtl(sorted, na.count, probs, ...)

## S3 method for class 'integer64'
sortqtl(sorted, na.count, probs, ...)

orderqtl(table, order, na.count, probs, ...)

## S3 method for class 'integer64'
orderqtl(table, order, na.count, probs, ...)

Arguments

sorted

a sorted integer64 vector

...

further arguments, passed from generics, ignored in methods

table

the original data with original order under the sorted vector

order

an integer order vector that turns 'table' into 'sorted'

x

an integer64 vector

method

see Details

nomatch

the value to be returned if an element is not found in the hashmap

nunique

number of unique elements, usually we get this from cache or call sortnut or ordernut

keep.order

determines order of results and speed: FALSE (the default) is faster and returns in sorted order, TRUE returns in the order of first appearance in the original data, but this requires extra work

nties

number of tied values, usually we get this from cache or call sortnut or ordernut

denormalize

FALSE returns counts of unique values, TRUE returns each value with its counts

na.skip.num

0 or the number of NAs. With 0, NAs are coded with 1L, with the number of NAs, these are coded with NA

na.count

the number of NAs, needed for this low-level function algorithm

probs

vector of probabilities in ⁠[0..1]⁠ for which we seek quantiles

Details

sortfun orderfun sortorderfun see also description
sortnut ordernut return number of tied and of unique values
sortfin orderfin %in%.integer64 return logical whether x is in table
orderpos sortorderpos match() return positions of x in table
orderdup sortorderdup duplicated() return logical whether values are duplicated
sortuni orderuni sortorderuni unique() return unique values (=dimensiontable)
orderupo sortorderupo unique() return positions of unique values
ordertie sortordertie return positions of tied values
orderkey sortorderkey positions of values in vector of unique values (match in dimensiontable)
sorttab ordertab sortordertab table() tabulate frequency of values
orderrnk sortorderrnk rank averaging ties
sortqtl orderqtl return quantiles given probabilities

The functions sortfin, orderfin, orderpos and sortorderpos each offer three algorithms for finding x in table.

With method=1L each value of x is searched independently using binary search, this is fastest for small tables.

With method=2L the values of x are first sorted and then searched using doubly exponential search, this is the best allround method.

With method=3L the values of x are first sorted and then searched using simple merging, this is the fastest method if table is huge and x has similar size and distribution of values.

With method=NULL the functions use a heuristic to determine the fastest algorithm.

The functions orderdup and sortorderdup each offer two algorithms for setting the truth values in the return vector.

With method=1L the return values are set directly which causes random write access on a possibly large return vector.

With method=2L the return values are first set in a smaller bit-vector – random access limited to a smaller memory region – and finally written sequentially to the logical output vector.

With method=NULL the functions use a heuristic to determine the fastest algorithm.

Value

see details

See Also

match()

Examples

message("check the code of 'optimizer64' for examples:")
 print(optimizer64)

Summary functions for integer64 vectors

Description

Summary functions for integer64 vectors. Function 'range' without arguments returns the smallest and largest value of the 'integer64' class.

Usage

## S3 method for class 'integer64'
any(..., na.rm = FALSE)

## S3 method for class 'integer64'
all(..., na.rm = FALSE)

## S3 method for class 'integer64'
sum(..., na.rm = FALSE)

## S3 method for class 'integer64'
prod(..., na.rm = FALSE)

## S3 method for class 'integer64'
min(..., na.rm = FALSE)

## S3 method for class 'integer64'
max(..., na.rm = FALSE)

## S3 method for class 'integer64'
range(..., na.rm = FALSE, finite = FALSE)

lim.integer64()

Arguments

...

atomic vectors of class 'integer64'

na.rm

logical scalar indicating whether to ignore NAs

finite

logical scalar indicating whether to ignore NAs (just for compatibility with range.default())

Details

The numerical summary methods always return integer64. Therefore the methods for min,max and range do not return ⁠+Inf,-Inf⁠ on empty arguments, but ⁠+9223372036854775807, -9223372036854775807⁠ (in this sequence). The same is true if only NAs are submitted with argument na.rm=TRUE.

lim.integer64 returns these limits in proper order ⁠-9223372036854775807, +9223372036854775807⁠ and without a warning().

Value

all() and any() return a logical scalar

range() returns a integer64 vector with two elements

min(), max(), sum() and prod() return a integer64 scalar

See Also

mean.integer64() cumsum.integer64() integer64()

Examples

lim.integer64()
  range(as.integer64(1:12))

Cross Tabulation and Table Creation for integer64

Description

table.integer64 uses the cross-classifying integer64 vectors to build a contingency table of the counts at each combination of vector values.

Usage

table.integer64(
  ...,
  return = c("table", "data.frame", "list"),
  order = c("values", "counts"),
  nunique = NULL,
  method = NULL,
  dnn = list.names(...),
  deparse.level = 1L
)

Arguments

...

one or more objects which can be interpreted as factors (including character strings), or a list (or data frame) whose components can be so interpreted. (For as.table and as.data.frame, arguments passed to specific methods.)

return

choose the return format, see details

order

By default results are created sorted by "values", or by "counts"

nunique

NULL or the number of unique values of table (including NA). Providing nunique can speed-up matching when table has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

dnn

the names to be given to the dimensions in the result (the dimnames names).

deparse.level

controls how the default dnn is constructed. See Details.

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

If the argument dnn is not supplied, the internal function list.names is called to compute the 'dimname names'. If the arguments in ... are named, those names are used. For the remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Arguments exclude, useNA, are not supported, i.e. NAs are always tabulated, and, different from table() they are sorted first if order="values".

Value

By default (with return="table") table() returns a contingency table, an object of class "table", an array of integer values. Note that unlike S the result is always an array, a 1D array if one factor is given. Note also that for multidimensional arrays this is a dense return structure which can dramatically increase RAM requirements (for large arrays with high mutual information, i.e. many possible input combinations of which only few occur) and that table() is limited to 2^31 possible combinations (e.g. two input vectors with 46340 unique values only). Finally note that the tabulated values or value-combinations are represented as dimnames and that the implied conversion of values to strings can cause severe performance problems since each string needs to be integrated into R's global string cache.

You can use the other ⁠return=⁠ options to cope with these problems, the potential combination limit is increased from 2^31 to 2^63 with these options, RAM is only required for observed combinations and string conversion is avoided.

With return="data.frame" you get a dense representation as a data.frame() (like that resulting from as.data.frame(table(...))) where only observed combinations are listed (each as a data.frame row) with the corresponding frequency counts (the latter as component named by responseName). This is the inverse of xtabs().

With return="list" you also get a dense representation as a simple list() with components

  • values a integer64 vector of the technically tabulated values, for 1D this is the tabulated values themselves, for kD these are the values representing the potential combinations of input values

  • counts the frequency counts

  • dims only for kD: a list with the vectors of the unique values of the input dimensions

Note

Note that by using as.integer64.factor() we can also input factors into table.integer64 – only the levels() get lost.

See Also

table() for more info on the standard version coping with Base R's data types, tabulate() which can faster tabulate integers with a limited range ⁠[1L .. nL not too big]⁠, unique.integer64() for the unique values without counting them and unipos.integer64() for the positions of the unique values.

Examples

message("pure integer64 examples")
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
y <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
z <- sample(c(rep(NA, 9), letters), 32, TRUE)
table.integer64(x)
table.integer64(x, order="counts")
table.integer64(x, y)
table.integer64(x, y, return="data.frame")

message("via as.integer64.factor we can use 'table.integer64' also for factors")
table.integer64(x, as.integer64(as.factor(z)))

Extract Positions of Tied Elements

Description

tiepos returns the positions of those elements that participate in ties.

Usage

tiepos(x, ...)

## S3 method for class 'integer64'
tiepos(x, nties = NULL, method = NULL, ...)

Arguments

x

a vector or a data frame or an array or NULL.

...

ignored

nties

NULL or the number of tied values (including NA). Providing nties can speed-up when x has no cache. Note that a wrong nties can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

Value

an integer vector of positions

See Also

rank.integer64() for possibly tied ranks and unipos.integer64() for positions of unique values.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
tiepos(x)

stopifnot(identical(tiepos(x),  (1:length(x))[duplicated(x) | rev(duplicated(rev(x)))]))

Extract Positions of Unique Elements

Description

unipos returns the positions of those elements returned by unique().

Usage

unipos(x, incomparables = FALSE, order = c("original", "values", "any"), ...)

## S3 method for class 'integer64'
unipos(
  x,
  incomparables = FALSE,
  order = c("original", "values", "any"),
  nunique = NULL,
  method = NULL,
  ...
)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

order

The order in which positions of unique values will be returned, see details

...

ignored

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up when x has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

The default order="original" collects unique values in the order of the first appearance in x like in unique(), this costs extra processing. order="values" collects unique values in sorted order like in table(), this costs extra processing with the hash methods but comes for free. order="any" collects unique values in undefined order, possibly faster. For hash methods this will be a quasi random order, for sort methods this will be sorted order.

Value

an integer vector of positions

See Also

unique.integer64() for unique values and match.integer64() for general matching.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
unipos(x)
unipos(x, order="values")

stopifnot(identical(unipos(x),  (1:length(x))[!duplicated(x)]))
stopifnot(identical(unipos(x),  match.integer64(unique(x), x)))
stopifnot(identical(unipos(x, order="values"),  match.integer64(unique(x, order="values"), x)))
stopifnot(identical(unique(x),  x[unipos(x)]))
stopifnot(identical(unique(x, order="values"),  x[unipos(x, order="values")]))

Extract Unique Elements from integer64

Description

unique returns a vector like x but with duplicate elements/rows removed.

Usage

## S3 method for class 'integer64'
unique(
  x,
  incomparables = FALSE,
  order = c("original", "values", "any"),
  nunique = NULL,
  method = NULL,
  ...
)

Arguments

x

a vector or a data frame or an array or NULL.

incomparables

ignored

order

The order in which unique values will be returned, see details

nunique

NULL or the number of unique values (including NA). Providing nunique can speed-up matching when x has no cache. Note that a wrong 'nunique“ can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

This function automatically chooses from several low-level functions considering the size of x and the availability of a cache.

Suitable methods are

  • hashmapuni (simultaneously creating and using a hashmap)

  • hashuni (first creating a hashmap then using it)

  • sortuni (fast sorting for sorted order only)

  • sortorderuni (fast ordering for original order only)

  • orderuni (memory saving ordering).

The default order="original" returns unique values in the order of the first appearance in x like in unique(), this costs extra processing. order="values" returns unique values in sorted order like in table(), this costs extra processing with the hash methods but comes for free. order="any" returns unique values in undefined order, possibly faster. For hash methods this will be a quasi random order, for sort methods this will be sorted order.

Value

For a vector, an object of the same type of x, but with only one copy of each duplicated element. No attributes are copied (so the result has no names).

See Also

unique() for the generic, unipos() which gives the indices of the unique elements and table.integer64() which gives frequencies of the unique elements.

Examples

x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
unique(x)
unique(x, order="values")

stopifnot(identical(unique(x),  x[!duplicated(x)]))
stopifnot(identical(unique(x),  as.integer64(unique(as.integer(x)))))
stopifnot(identical(unique(x, order="values")
,  as.integer64(sort(unique(as.integer(x)), na.last=FALSE))))

Binary operators for integer64 vectors

Description

Binary operators for integer64 vectors.

Usage

binattr(e1, e2)

## S3 method for class 'integer64'
e1 + e2

## S3 method for class 'integer64'
e1 - e2

## S3 method for class 'integer64'
e1 %/% e2

## S3 method for class 'integer64'
e1 %% e2

## S3 method for class 'integer64'
e1 * e2

## S3 method for class 'integer64'
e1 ^ e2

## S3 method for class 'integer64'
e1 / e2

## S3 method for class 'integer64'
e1 == e2

## S3 method for class 'integer64'
e1 != e2

## S3 method for class 'integer64'
e1 < e2

## S3 method for class 'integer64'
e1 <= e2

## S3 method for class 'integer64'
e1 > e2

## S3 method for class 'integer64'
e1 >= e2

## S3 method for class 'integer64'
e1 & e2

## S3 method for class 'integer64'
e1 | e2

## S3 method for class 'integer64'
xor(x, y)

Arguments

e1

an atomic vector of class 'integer64'

e2

an atomic vector of class 'integer64'

x

an atomic vector of class 'integer64'

y

an atomic vector of class 'integer64'

Value

&, |, xor(), !=, ==, <, <=, >, >= return a logical vector

^ and / return a double vector

+, -, *, %/%, %% return a vector of class 'integer64'

See Also

format.integer64() integer64()

Examples

as.integer64(1:12) - 1
  options(integer64_semantics="new")
  d <- 2.5
  i <- as.integer64(5)
  d/i  # new 0.5
  d*i  # new 13
  i*d  # new 13
  options(integer64_semantics="old")
  d/i  # old: 0.4
  d*i  # old: 10
  i*d  # old: 13